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NOMENCLATURE 
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Definition 

grav i ty  acce l e r a t i on  a t  a  des igna ted  point 

p a r a m e t e r  in  equat ion q = e e 
2AL and  f u r t h e r  defined by 

- 1 
A = H / ~ K ,  c m  . Also  used  a s  a  p a r a m e t e r  equa l  t o  
~ A T / ~ T .  

- 2 
g rav i ty  g rad i en t ,  s e c  

CD c e l l  width,  c m  

m o l e  f r ac t i on  

c u r i e s  

s p a c e  betwccn hot and cold wa l l s ,  c m  
2 

coefficient of o r d i n a r y  diffusion,  c m  / s e c  ( s e e  note  1 )  

2  0 liquid t h e r m a l  diffusion coeff ic ient ,  cm / s e c  - C ( s e e  note  1 )  
2  

gaseous  t h e r m a l  di i iusion coef f ic ien t ,  crn / s e c  ( s e e  no te  1 )  

mole f r ac t iun  diifusion coeff ic ient  1 See  
weight  f r ac t i on  diffusion coeff ic ient  Appendix G 

m o l a r  concent ra t ion  diffusion coeff ic ient  J 
expc r imen ta l  efficiency 

l imit in  . enc:rgy conve r s ion  efficiency 

L gravi ty  accc l c r a t i on ,  c m / s e c  

grav i ty  acc-clerat ion on e a r t h  s u r f a c e ,  980 ~ m / ' s e c  2 

hcight ,  cn3 

t r a n s p o r t  c.ocfficicnt in equation q ; e HL/'K , p n / s e c  
C 

L 
m a s s  flux, g m / c m  - s e c  

2 
thc  r ~ n a l  cliffusivity, c m  / s e c  

tht: r m a l  diffusion r a t i o ,  d i m i ~ n s i o n l e s s  

vii 

LOCUHLED - HUNTSVILLE RCSCARCII & ENGlNlCHlNG CENTCR 



NOMENCLATURE (Continued) 

Svm bol 

t r a n s p o r t  coeff icient  i n  equat ion q = e 
f2 

HL/K. Also  K = 
Kc t Kd, pm-cm/sec  

remixing t r a n s p r t  coeff icient ,  &:m-cm/sec 

c e l l  back diffusion t r a n s p o r t  coeff icient ,  gm - c m / s e c  

to ta l  length of c a s c a d e  c e l l ,  cm 

length of a  s ing le  c e i l ,  c m  

m o l a r  concent ra t ion ,  rno les / l i t e  r  

mi l l ion  e l ec t ron  vol ts  

mo lecu la r  weight,  gm 

ave rage  ~ n o l e c u l a r  weight ,  g m  

p r e s s u r e  

P rand t l  number  -- v/k ,  din:ensionless 

nl 

M E V  

M.Wt. - 
M 

P 

1' 1. 

number  o l  m o l e s  
c ( 1  - C s )  

sc:paration f ac to r  a t  t i m e  t 

separa t ion  f ac to r  at s t eady  s t a t e  

Nus se l t  n t lmbcr ,  hea t  t r anspor t cd / ' hca t  t r anspor t ed  if coii - 
duc tion w e r c  the  only m e a n s  of hea t  t r a n s f e r  

radius of ou te r  cy l indr ica l  co lumn 

radius of inner  cy l indr ica l  column 

Iiayleigh number  ; 

0 
n ~ o l ; ~ l -  gas t onstant ,  1 .9872 cal/mulct- I.. 

l imiting en t ropy  cfficicnc y 

s epa ra t ive  work  

vclocity , c.m/scc 

t ime  

viii  
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NOMENCLATURE (Continued) 

t i m e  t o  r each  l/eth of the steady s t a t e  separat ion fac tor  q e 

a t empera tu re  d i f ferent  f r o m  T 

tempera tu re  of the hot wall  

t empera tu re  of the  cold wall 

0 T ~ - T ~ ,  c o r  OK 

TH + T C  
'mean t empera tu re ,  2 

unit separa t ive  work 

weight fract ion and a l s o  1/2 d 

one-half amount of feedstock o r  watts  

thc: rmal diffusion fac tor  
I (av) (OC O K ) -  1 coefficient of the rmal  expansion, aT ,, 

difference c - c 
e s 

stage number  
2 0 

the rmal  conductivity, c a  l/cm s cc ~ ; / c n ~  

cocfficicl:'r ~f viscosi ty,  poise n r  gm/cm-sc.c 

tien sit  y , g~-n/cm 3 

0 - 1  
flow r a t e ,  g n ~ / s e c ;  o r  Sorclt c.oefficic:nt, ( C )  

rat(. of t r anspor t  o f  a spcc i e s ,  gm/sec  
2 kincmstic viscosi ty,  cm / s e c  

m a s s  of g a s  per  unit length of cc l l ,  gm/cm 

rotation r a t e  

optimum 

species  designation o r  s tage  number  
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S u l ~ s r :  r ipts  

f 

i 

n 

C 

W 

m 

Supcrsc  r ip ts  

0 
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NOMENC LATURE (Continued) 

final o r  feedstock 

initia! or  i species  

initial 

m o l e  f rac t ion  

weight f rac t ion  

mola r  concentrat ion 

original  o r  ini t ial  

Not<,: I t  is easy to  become confused reading the l i t e ra tu re  because definitions 
of thc: the rmal  diffusion fac tor  and coefficient a r e  not always c l e a r .  
Powers  ant1 o thc r s ,  fo r  example,  use  aD12 /T for  D ' .  (Thc  present  
s tudy a l s o  follows Power ' s  convention.) Some havr2 adopted the con- 
vention that D' is negative when the hcavicr  con~ponen t  concentrates in 
thc coltlcr rcgions. The situation regarding concentrat ion units i s  eq.,en 
morr. (unfused. Appcndix G indicates the source  of the  difficulty. 

X 
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Section 1 

INTRODUCTION AND SUMMARY 

* 
The Clusius-Dickel (CD) technique couples t h e r m a l  diffusion to  a counter -  

cu r ren t  na tura l  convective flow t o  effect separa t ion  in liquid and gaseous  solu-  

tions. Mater ia ls  separable  by the  technique include: 

Aqueous biological solutions 

Isotopes in both gas  and liquid s ta tes  

8 Aqueous solutions of both ionized 
and un-ionized m a t e r i a l s  

8 Organic solutions 

Liquid meta l l ic  solutions 

8 Fused  s a l t  solutions 

8 Ortho and para-hydrogen mix tu res  

The technique was  d iscovered in the  l a t e  1930s by K, Clusius  and C, Dickel 

but icll into relative obscuri ty fo r  commerc ia l  applications about 20 y e a r s  a f t e r  

its discovery.  The r easons  for  i t s  decline included a number  of de le ter ious  

apparatus and operat ing fea tu res ,  among which w e r e  l a rge  power r equ i rements ,  

costly cquipmcnt construct ion,  and smal l  process ing volumes.  The  p resen t  
* 

stutly, howcvcr, a f t c r  c r i t ica l ly  reexamining the CDS technique, concludes that  

thc ol,jectional~lc fea tures  of the technique can  probably be circumvented b y  a 

n u n ~ l ) c r  of rncans anlong which a r e :  (1)  conducting thc C D  operation in  space  

c?nvironrncnts; ( 2 )  rltilizing modified ce l l  des igns ;  and (3)  combining the  CD 

tc.c.llnicli~c* with other  scpara t ivc  techniques o r  pr inc ip les ,  i.e., e l cc t ruphorcs i s ,  

liclcl Ilow fractionation ( F F F ) ,  adsorption (pa ramet r i c  pumping), and chemica l  

rcaactions. Mcans ( 2 )  and (3) would benefit still fu r the r  f r o m  .space environ- 

ments .  It i s  a l s o  concluded that the  potential of the  technique for  separa t ions  

of biological and o ther  aqueous solutions has  been largely overlooked. The 

C1) ~ r i n ~ . i p l c  appears  l u r t h e r  to  offer novel e a r t h  applications such a s  so la r  

water desalination, energy conversion devices ,  and a u s e  f o r  was te  heat.  

'C11 2 Clusius-Dickel; CDS = Clusius-Dickel  Separation. 
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This  document reviews the h is tory ,  applicat ions,  and theore t ica l  b a s i t  

of the  tcchniquc!. The advantages to  be rea l ized  by conduction of CDSs in 

low - g  , space environments a r e  then deduced. The low -g  space  advantages 

s o  identified a r e :  

a ileduc ed convective flow velocities in low-g envirnnments 
will  allow l a r g e r  c e l l  wal l  spacings allowing in t u r n  l a r g e r  
process ing volumes (throughputs) and avoidance of de le ter ious  
" parasitic1! remixing. 

a 130wer require,ments will  be supplied "f ree t '  by s o l a r  heating 
and radiation cooling. 

L a r g c r  allowable ce l l  wall  spacings wil l  reduce  equipment 
construct ion cos t s .  

Lack of gravity -induced mechanical  s t r e s s e s  wil l  allow 
longcr ce l l  lengths to be utilized thereby increas ing s ize  
of p roc c s sing volumes. 

A possibility of conducting CDS with f r e e  floating liquid 
sphcres .  

This document a l s o  repor t s  the  result0 of investigations i ~ i m e d  a t  f ~ r t h e r  

improving C;DS c:fficiencies by al ter ing convective flow pat terns .  The  question 

o f  wlic.thc.1. niultic.cllula r flow o r  turhulenc e can introduce a new separa t ion  

mc.c:h,~nism wi~icli  woi~ld boost separat ion efficiencies a t  l eas t  an  o r d e r  of rnag- 

nituclc* is con sitlc rcd bl.,ttfly. The r e su l t s  indicate t5at  ce r t a in  mult ic  e l lu lar  

ilO\:. ; ~ . ~ t t e r n s  pl-obably can inc rease  separat ion efficiencies. Exper imenta l  

vcrific,zltion of multic cl lular  efficacy, however,  has  not yet  been accomplished 

pr imar i ly  bec.ausc oi tlifficulties in defining required boundary conditions ic\r 

a givcn .nulticcllular flow pattern.  

T111- iintlings of the p resen t  study a l s o  indicate the CDS tcchniquc holds 

thc prornlsc. ol finding unusual anplication in the  a r e a s  of biological and 

p ~ ) l y ~ ~ i c r  scbparations. Biological and polymer solutes genera;ly have high 

thc l -n~a l  diffusion fac to r s  and thus can bc rcadily separa ted  with low power 

consumption. I*'urth?rrnore, the ability of the technique t o  separa te  solute 

mo1c:culcs on thc bas is  of shape differences alone should p resen t  v e r y  
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intc : <-sting possibilities for separations of complicated biological materials 

such a s  DNA molecules, viruses, and "B" and "TIt lymphocytes. The possi- 

I~ility ol combining CDS with other techniques, especially the FFF technique, 

offers further exciting p~ss ib i l i t ies .  

The Soret effect o r  thermal diffusion can generate potential grad: Znts 

in electrolytic solutions. Non -c anvective liquid thermocells, therefore, can 

convert heat into electricity. It has been reported by others that such a cell  

utilizing lead electrodes and sulfuric acid can attain an efficiency of 6.16%, 

comparable to 107" for  the best thermoelectric generators currently used. 

The present study speculates that introducing electrodes into a CD column 

that is  separating electrolyte holds the possibility of a self-renewing con- 

centration cell run by solar power. 

Finally, the CD principle appears to offer earth applications in the a reas  

of water desalination and a use for waste heat. 

It  is also interesting to note that the Russians also appear to be redis- 

covering the CD technique a s  evidenced by some ten recent papers. (See 

Bibliography). 

3 
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Section 2 

HISTORY O F  CDS 

In 1856 C.  Ludwig d i scove red  that  a t e m p e r a t u r e  g rad ien t  can  s e p a r a t e  

components  of a l iquid solution. Ludwig hea ted  one  leg of a n  inver ted  U-tube 

f i l led with a n  aqueous solution of sodium su l fa te  and  cooled t h e  o ther .  Af te r  

a few days  c r y s t a l s  of sod ium su l fa te  w e r e  seen  t o  f o r m  in t h e  cooled leg.  In 

1879, C. So re t ,  apparent ly  unaware  of Ludwig 's  work ,  s tudied the  phenomenon 

more extensively.  T h e  sepa ra t ion  of components  i n  l iquid solution by a t h e r m a l  

g rad ien t  subsequent ly b e c a m e  known a s  t h e  Sore t  effect.  Although J. H. van ' t  Hoff 

offered one explanation of t h e  effect in 1887, a sa t i s f ac to ry  theo ry  for  t h e  effect 

in l i q u i l s  i s  s t i l l  lacking.  A t e m p e r a t u r e  g rad ienL  s e p a r a t i v e  effect in  g a s e s  

was  predic ted  theore t ica l ly  by D. Enskog and  S. Chapman a lmos t  s imul taneous ly  

i n  191 1- 12 and was  subsequent ly conf i rmed exper imenta l ly  in 191 ;. The  phe-  

nomenon in g:-rses i s  usua l ly  ca l led  t h e r m a l  diffusion. It m a y  be mentioned.  

however ,  that  a va r l e ty  of t e r m s  i s  c u r r e n t l y  in u s e  t o  indicate  separation by 

m e a n s  of a t h e r m a l  grad ien t .  T h e s e  include Sore t  e f fec t ,  Sore t  diffusion. 

t h e r m a l  diflusioil, thermodi f fus ion ,  t h e r m o t r a n s p o r t .  t h e r m a l  t r a n s p o r t  

and t he rmophores i s .  T h e  p r e s e n t  work wil l  gene ra l ly  u s e  t h e  t e r m  t h e r m a l  

diffusion r e g a r d l e s s  of whether  t h e  sepa ra t ion  t a k e s  p l ace  in t h e  l iquid o r  g a s  

phase. 

T h e r m a l  diffusion by  i tself  i s  a v e r y  slow a n d  inefficlcnt p r o c e s s  ( s e e  

Appendix A for  t heo re t i ca l  de t a i l s ) .  T h e  inefficiency of the  p r o c e s s  i s  readi ly  

unders tandable  whcn w e  cons ide r  tha t  t h e  separa t ing  f o r c e  gene ra t ed  by a 

t h c r m a l  grad ien t  i s  opposed by a remixing fo rce  gene ra t ed  by o rd ina ry  dif-  

fusion. The  sepa ra t ions  achievable  by t h e r m a l  diffusion a lone  a r e  of t h e  o r d e r  

of s e v e r a l  percent o r  frequent ly only a few p a r t s  p e r  thousand (Ref.  1 ,  p. 273). 

Separa t ions  in s t a t i c  c e l l s ,  i.e., c e l l s  in which no fluid flow o c c u r s .  t h e r e f o r e ,  

never  have 1,ecnmt: a p r a c t i c a l  technique.  In 1938, however ,  K. Clus ius  and  

G.  Dickel d i scove red  tha t  if a c o u n t e r c u r r e n t ,  n a t u r a l  convec t ive  flow i s  

coupled with t h e r m a l  diffusion, s epa ra t ion  speed  a n d  efficiency can  be  

l.OCI(HEED - HUNTSVILLE RESEARCH & ENGINEERING CENTER 



LMSC-HREC TR 0496521  

increased by o r d e r s  of magnitude. Using a convective column that was 36 

m e t e r s  long Clusius and Dickel inc reased  the  separa t ion  of f r o m  

HC!~? by a factor  of 4000 over  that obtainable in a non-convective cel l .  Sepa- 

rat ion of a l a r g e  variety of m a t e r i a l s  was investigated soon a f t e r  announcement 

of the  discovery.  The types of c e l l s  used w e r e  e i ther  flat plate c e l l s  o r  cyl in-  

d r i ca l  ce l l s ,  in which the  solution t o  be separa ted  was  contained in the  annulus 

between two co-axial cyl icders .  The essent ia l  e lements  of an appara tus  which 

i l lus t ra tes  the  principles involved i s  shown in the  iollowing schematic.  

Hot Wall 

r Natura l ,  Unicellular 
Convection 

Cold Wall 

Solution 

t o  s c a l e )  

Fig. 1 - Schematic of CD Cel? Edsent ia ls  

To understand how a count e rcur ren t  convective flow enhances separa t ion .  

conslder  f i r s t  the  situation where  no flow i s  p resen t .  In such a c a s e .  c~ne  compo-  

nent ol t he  solution migra tes  toward the  hot wall while the  other  m i g r a t e s  toward 

the  cold wall. The migra t ion ,  however,  eventually hal ts  a s  back diffusion g r a d -  

ually builds up. A final steady stat e concentration gradient eventually r e s u l t s .  
I 

i.c., eventually the  r a t e  a t  which molecules m i g r a t e  becausc of t h e r m a l  dif- 
, 

fusion becomes equal t o  the  r a t e  of a counter  m a s s  diffusion. If now a counter -  ?, 

current  flow is introduced, molecules migrat ing toward the  cold o r  hot wal ls  
i 

a r e  rcmoved fas t e r  nea r  the  wall than they a r e  n e a r  the  cen te r  of the  ce l l  by 
i 

downward o r  upward flowing c u r r e n t s .  Back m a s s  diffusion i s  thereby reduced.  

I f  corivection is too fast ,  a remixing effect due to  flow can predominate.  Ob- 

viously, an optimum flow r a t e  o r  convective velocity ex i s t s  (mathematical  

de ta i l s  a r e  given in Appendix B).  
5 
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The d iscovery  of the  enhanced separa t ion  effect of convection by Clus ius  

and Dickel just before World War 11 led  t o  the  method being intensively ex- 

plored in the  next decade a s  a means  of s e p a r a t i m  of uranium isotopes.  Be-  

cause  of t h e  w a r t i m e  secur i ty  t h e  work was  highly sec re t  and publications did 

not appear  until a f t e r  the  war .  In publications appearing a f t e r  the  w a r  it  i s  

r epor ted  that a plant had been constructed a s  p a r t  of the  Manhattan project  

which enriched n o r m a l  uranium containing 0.71590 u~~~ t o  0.8601.. The plant 

cons is ted  of 2100 separa t ion  columns,  each about 48 feet long. The  uranium 

was p rocessed  a s  uranium hexafluoride. The plant was  in operation for about 

s ix months ,  and then was dismantled when CDS was displaced by the  gaseous  

diffusion enrichment method. The principal  drawbacks of conventional CDS 

for uranium enrichment a r e  t h e  long relaxation t i m e s  ( t ime requi red  to  at tain 

nea r  equil ibrium) and the  high heat consumption. The power cost  alone for  

CDS was found t o  be about 100 t i m e s  g r e a t e r  thdn the total  cos t  of separa t ive  

work by gaseous  diffusion (Ref. 2) .  

During the  50s the  technique was explored for various separa t ions  and 

fractionations of petroleum and associa ted  products  ( s e e  Appendix D for specif ic  

separations). Because  of the  high power requi rement ,  however, th i s  a r e a  of 

application a l so  faded. A s  far  as  i s  known, CDS i s  utilized commercia l ly  

present ly  only for the  separa t ion  of r a r e  gaseous  isotopes and for purification 

of iner t ia l  guidance fluid. 

Although C D S  is current ly  a relat ively obscure  technique, the  Soret 

effect is esperiencing a resu rgence  of in teres t .  A number  of papers  have 

appeared recently dealing with the  r o l e  of the  Soret effect in phenomena 

su, . ,~  as double diffusive convection and crystal l izat ion.  

I t  may be mentioned incidently that CDS i s  a l so  r e f e r r e d  t o  a s  ' ' thcrmo- 

gravitat ional  separation" in the  l i t e ra tu re .  M o r e  extcnsivc h is tor ica l  rliscus- 

s ions of both the CDS technique and the Sore t  effect wi l l  be found in the genera l  

r e fe rences  givcn in the  Bibliography. 
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Section 3 

:.,EPARATIONS POSSIBLE B Y  T H E  CD TECHNIQUE 

The CD technique lends itself t o  separations in both the liquid and gaseous 

phases. The ; qtriguing aspect of CDS i s  that separation depends not only on the 

relat ive mass  s of the constituents to  be separated but a lso  on their  atomic 

c o m p o ~  rtion altd molecular shapes. Thus not only molecules of differing 

masses  llut a lso  molecules of identical masses  but differing in atomic species 

o r  in arrangement of atoms, i.e., i somers ,  can be separated using this  method. 

Also, with t erriary or higher mult icomponent mixtures ,  varying degrees  of 

fractionation can be achieved. 

The theory of thermal  diffusion i s  fairly well established for gases ,  and 

calculation of thermal  diffusion factors  by means of various formulas i s  pos- 

sible. For liquids, on the  other hand, no general  theory exists and it i s  neces-  

sa ry  to  eitk-er c ~ n s u l t  the l i tera ture  t o  s ee  if a certain separation i s  feasible 

or  to  determine the feaj.oility expt :imentally. 

i* 
L* 

The range of separations possible by CDS i s  indicated by the following 

l is t .  
r -  

Licluid P l ~ a s  9 Separations 

13iologl cal solut.ons and suspensions (viruses ,  carbohydrates, 
e s t e r s ,  pol: accharides, enzymes, etc.) 

Aqueous electrolytic solutions (water solutions of NaCP , CuSO 
etc.) 4' 

Aq e o u s  non -electrolyt ic solutions (alcohol and water 

' ;>lyme:- solutions (polystyrene in toluene) 

Organlc isomers  (ortho, meta ,  and para  xylene, c i s - t rans  
i somers ,  etc.) 

Binary ;*nd ternary organic mixtures  (cetane and cumene, 
benz,!r.e and n-heptane, etc.) 

('-1 fractionations (talloil, white oil,  paraffinic oils ,  etc.) 

8 
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34 32 Isotopic solutions (D.0 f r o m  H.O. c ~ ~ s ,  f r o m  C S S. 

Molten sa l t  3 olutions 

Liquid m e t a l  solutions 

Gas P h a s e  Separation 
4 Isotopic mixtures  (D f rom H 3 ~ c  f r o m  He, 16. la0 

2 2' 2  
f rom 1602, etc.) 

Various g a s  mix tu res  ( B r Z  and Cf2 f rom noble g a s e s ,  
a rgon f rom neon, etc .  ) 

Ortho and p a r a  hydrogen 

In Appendix D a comprehensive  bibliography of a l a r g e  number  of specif ic  

i ; separat ions that have been repor ted  in the  l i t e r a t u r e  i s  given. 

8 
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Section 4 

OPERATIONAL PARAMETERS O F  CONVENTIONAL CD CELLS 

C enera l  Relationships 

The theory  developed in the  ea r ly  40s  by F u r r y ,  Jones ,  and Onsager 

(F JO) (Ref. 3 )  for CD ce l l s  can  s e r v e  t o  g ive  a genera l ,  quali tat ive "feel1' f o r  

what degrees  of separat ion,  in what t i m e  in tervals ,  a r e  possible.  It should 

be  emphasized,  however, thkt the  F J O  theory  i s  only a s  valid a s  the  validity 

of i t s  assumptions.  Probably the  mos t  important  experimental  control  that 

mus t  be maintained, i f  t h e  F J O  theory  is to  apply, i s  that of the  convective 

flow pattern.  The FJO theory  a s s u m e s  a l aminar ,  unicell  type of convection. 

Deviations f r o m  th is  type  flow pat tern  can have e i ther  prono-mced dele ter ious  

(pa ras i t i c )  o r  possibly des i rab le  effects depending on the  pa r t i cu la r  deviation. 

On ea r th  CD operation is notoriously sensi t ive t o  pa ras i t i c  effects.  Enhance- 

ment of separat ion efficiencies by flow pat terns  o ther  than l aminar  unicel lular ,  

on the  other hand, occurs  spuriously and has not a s  yet been conclusively 

demonst ra ted  experimental ly.  The question of flow pattern on separat ion has  

been considered only c u r s o r i l y  in the  l i t e ra tu re .  Experimental  and theore t ica l  

work conducted in the  c o u r s e  of the  p resen t  study, a s  well a s  s o m e  repor t s  In 

the  l i t e r a t u r e  of improved separa t ions  as the  resul t  of turbulence,  however, in- 

d ica te  that flow pat terns  other than unicel lular  may  resul t  in be t ter  separa t ions .  

Both of t h e s e  a spec t s  of CDS a r e  cons idered  fur ther  in a following section. 

In t h e  present  section the  F J O  theory  will be utilized t o  indicate genera l ly  how 

conventional CD c e l l s  work with different m a t e r i a l  s y s t e m s  and how p a r a m e t e r s  

such a s  column length, t e m p e r a t u r e  d i f ference ,  slit  width, and gravity level  

affect separat ion levels  and t imes .  

The separa t ion  p a r a m e t e r s  that  a r e  of present  p r i m a r y  in teres t  a r e  

the  following : 

9 
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9 t rans ient  separat ion factor  

q e  
separat ion factor  a t  s teady s t a t e  o r  max imum 
separat ion at tainable in a given ce l l  

t t i m e  t o  r e a c h  a separat ion fac to r  of q 

t; relaxation t i m e  t o  r each  l /eth of the  steady 
s t a t e  factor  q e 

f 
5 j' 
3 i ,  The separat ion fac to r s  q and r a r e  defined by the  following relationship: e 
y r. 

where  c i s  the  mole o r  weight fraction of a given component in the  e n r i c h k g  e 
par t  of the  ce l l ,  and c s  is the  corresponding concentrat ion in the  str ipping 

j: par t  of the  ce l l .  If q i s  rewri t ten  as 

it is readily seen that q r e p r e s e n t s  a re la t ive  separat ion.  The following 

s imple  example i l lus t ra tes  fur ther  the  meaning of q .  Suppose a solution 

containing 4'31 by weight of solute is separdted  s o  that at the  enriching end 

a 670 solution is  obtained and a 27' solution i s  obtained at the  stripping end. 

The q factor for such a separat ion would be 6 .  

The l ighter  c ~ m p o n e n t  of a bicomponent mix tu re  usually concentra tes  at 

the  tci+ of a ce l l  and the  heavier  at the  bottom, i.e., the  mixture  i s  enriched 

at the  lop with lighter component and s t r ipped of the  l ighter  component at the  

bottom. The separat ion factor can vary f rom one,  which indicates no s e p a r a -  

tiori. t o  values in the  mil l ions o r  m o r e .  However, a s  will soon be speil, e x t r a -  

ordinar i ly  huge values of q a r e  general ly accompanied by huge values of 

relaxation t i m e s .  P rac t i ca l  values of q ,  which give reasonable  separa t ion  

t i m e s ,  range  from about 1.001 t o  3000. The range  2 t o  5, however. a p p e a r s  

a s  the  most favorable for achieving reasonable  separa t ions  in reasonable  

t imes .  

10 
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The separation factors and relaxation t imes depend on a number of 

factors,  including cell geometry and construction. The theoretical depend- 

encies of the separation factors and the relaxation t imes on the various 

column, operational, and mater ia l  parameters  a r e  outlined in Appendix B. 

With the aid of the theoretical relationships presented in Appendix B it i s  

possible to define optimum values of various operating parameters .  For 

example, for a given solution and a given temperature  difference, the spacing, 

d,  between the hot and cold wall which will result  in optimum separation at  

steady s ta te  i s  given by 

Alternatively , to calculate an optimum gravity level for a given annular spacing. 

the following relationship applies (Appendix B) 

In o rder  to  maintain the required unicellular flow pattern, the cel l  should 

not have parameters  which would result in a Reynolds number. Re. more  than 

25. If the Re exceeds 25, turbulence ensues. Turbulence in a conventional 

C D  cell would mean remixing and decrease separation efficiency. The condi- 

tion that  R e  < 25 can be restated (Appendix B) a s  

Practically, values of g/g less  than about 5 should be sought t o  be on the 
opt 

safe sidc. The present study, however, for calculational convenience se t s  

'he  value of g/g tha: i s  not t o  be exceeded at 10. Interes~ingly enough, 
opt 
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P I m o r e  efficient operation ensues  a t  l a r g e r  g/g values than a t  s m a l l e r  va luer  
opt 

(Ref. 3, p. 173). 

In the  following subsect ions example calculat ions fo r  both single s tage  

and mul t i s tage  CDS a r e  given. Production CDSs a r e  usually continuous, 

z x I cascade  operat ions,  i.e., a number  of  separa t ion  c e l l s  a r e  a r ranged  in s o m e  

[ so r t  of a pyramid fashion and continuously fed a t  one end and products  and 

s t r ipped solutions taken out a t  the  o ther  end. Although single s t age  CD ce l l s  

a r e  usually used for  r e s e a r c h  o r  labora tory  purposes ,  they m a y  be considered  

production units if t he  amount of product requi red  i s  smal l .  

Example Calculations I l lustrat ing Single Stape Operation 

In Table 1 s o m e  examples  of single s tage  CDS a r e  presented  for  ins t ruc -  

t ive and compar ison purposes .  Single s t age  operation can be conducted in a 

variety of c e l l s  which may  o r  m a y  not include r e s e r v o i r s .  In the  present  study 

only two types of single s t age  c e l l s  a r e  considered.  One type  i s  a flat plate 

ce l l  without r e s e r v o i r s .  (In Appendix B t h e  modification that must  be made  t o  

the  mathemat ics  of a flat plate cel.1 t o  r ender  them suitable for cyl indrical  ce l l s  

without r e s e r v o i r s  i s  briefly indicated.) The o ther  type ce l l  cons idered  i s  a 

f lat  plate ce l l  with an  infinite r e s e r v o i r  at tached t o  the  stripping end of the  

ce l l .  Mathematical  formulas  for both type c e l l s  a r e  given in Appendix B. The 

important difference between the  two types of c.ells t o  be cons idered  for present  

purposes  i s  that the  cel l  with an  infinite r e s e r v o i r  at one end i s  capable of ma in -  

taining the  concentration a t  that end a t  s o m e  constant ,  ini t ial  value. In the  c e l l s  

without r e s e r v o i r s ,  concentrat ions va ry  throughout the  c e l l  as separa t ion  p ro -  

ceeds  until  a s teady s t a t e  condition i s  reached.  The ce l l  with an  infinite 

r e s e r v o i r  attached t o  one end r e p r e s e n t s  a somewhat m o r e  rea l i s t ic  c a s e  for  

l a r g e  production type operat ions,  a s  will  be subsequently evident. The ce l l  

without r e s e r v o i r s  i s  of in teres t  for s m a l l  s c a l e  labora tory  type  operations. 

The m a t e r i a l  p roper t i e s  used in the  calculat ions of Table 1 a r e  given 

in Table  2. 

12 
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One fea ture  of t h e  calculations presented  in Table  1 which should be  

irnmediat ely apparent i s  that ve ry  l a r g e  separat ion fac tors  a r e  imprac t i ca l  

F because of ve ry  l a rge  accompanying relaxat  ion t imes .  P r a c t i c a l  values of 
5, 

q o r  qe  fall in the  range of about 1 .OO t o  4.00. F r o m  the  c a s e s  in which L, 

the  length of the column, and AT, the t e m p e r a t u r e  difference between the  hot 

and cold walls,  have been var ied ,  it is  seen  that  L and AT exer t  but a minor  

3- effect on separation efficiencies and relaxation t imes .  The mos t  important  
2 .  

! i, paramete r  i s  d ,  t h e  wall spacing. Even a minute change in t h i s  p a r a m e t e r  

P 
, *. 

exer t s  a profound effect an the  separat ion fac tors  and relaxation t i m e s .  Of 
: 3 

F l e s s e r ,  but s t i l l  significant, effect i s  the  gravi ty  level.  This  aspect  of CDS 
; 4s 
! i s  discussed fur ther  in Section 5. . - 
i $ .  
, i r  

Although the  example c a s e s  a r e  not s t r ic t ly  comparable ,  it i s  fair ly 

, ? '  evident that g a s e s  a r e  m o s t  adapteble t o  CDS, allowing relat ively l a rge  sepa- 
t - rat ions in relat ively short  t i m e  per iods  with relat ively l a r g e  wall spacings.  

i - Liquid meta ls  probably have t o  be considered a s  leas t  adaptable, especial ly 
l 
4 .  with rega rd  t o  wall spacings. 

? - 
4 It i s  interesting t o  cons ider  the  r e s u l t s  for  U F  because of i t s  h is tor ica l  
i. 6 

importance. As mentioned e a r l i e r ,  CDS was f i r s t  applied on a l a r g e  sca le  in . . 
8 the  separation of 2 3 5 ~  f rom 238u 3 . The uranium was in the  fo rm UF,. The u i* 

values of wall spacings and t empera tu re  difference ( ~ 2 2 ~ ~ 1 ,  column length 
- (1460 crn) in C a s e  G3 a r e  those  which w e r e  used in producing 2 3 5 ~  by t h e r m a l  

I -. diffdsion during the  war  (Refs.4 and 5). The separat ion fac to r s  achieved with 

: - such c olurnns w e r e  on the  o r d e r  of 1.1 17 t o  2.72. It i s  interesting t o  note, t h e r e -  
a 
6- fo re ,  that present  calculations show that  the flow a t  a gravity level  of l g  (980 

2 crn/sec ) in a 1460 c m  long ce l l  and 0.025 crn wall  spacing a c r o s s  which 2 2 2 ' ~  ' I; i s  applied i s  turbulent.  The numbers  given in parentheses  in Table 1 for  th is  

case  a r c  those calculated ignoring the  condition that g should not exceed g 
i .. opt 
, a: by ten. The present  s imple  calculations, a r e  of c o u r s e ,  not s t r i c t ly  applicable 
;, A. t o  the  r e a l  case ,  considerat ions such a s  cyl indrical  co r rec t ions  and p r e s s u r e  
i If having been ignored. The r e a l  c a s e ,  however, . oduced many puzzling fea tures  

i t and inconsistencies (Ref. 6 ) ,  ar is ing  undoubtedly f rom deviations f rom a s t r i c t ly  

unicellular flow pattern.  In Section 6 the  3ffect of flow pat terns  on separa t ion  

efficiency is considered fur ther .  

17 
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Another aspect of CDS that emerges f rom consideration of Table 1 i s  a 

that sizeable separations of aqueous solutions a r e  achievable with moderate 

temperature differences. The method, a s  a mat ter  of fact, will probably find 

i ts  greates t  application in biological separations where molecules and ultra - 
microscopic part icles to  be separated a r e  quite l a rge ,  structurally complex 

and therefore possess  l a rge  a factors. It may be worthwhile t o  mention that 

the absolute values of temperature  can be a s  low a s  i s  practical  f rom the 

viewpoint of freezing avoidance. 

Fur thermore,  it can be seen f rom Table 1 that separation t imes  for cel ls  

without reservo i r s  a r e  quite short  so  that CDS for small  scale  laboratory o r  

industrial applications should be very feasible. 

Continuous Multistage Operation 

Any production type CD cel l  would almost certainly be one which i s  

continuously operated, i.e., unseparated solution would be fed in continuously 

at  one point of the cell  and product and stripped solution collected continuously 

a t  other points. Figure 2 i l lustrates schematically an arrangement for con- 

t inuous CD operation 

Feed from Scrubber 

-+ Enriched Solution 
of Concentration cf 

of Concentration ci 
b 4 

Fig. 2 - Schematic of a Continuous Single Stage GD Cell 

. 

CD Cell 
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2AL for various q values a r e  given. Furthermore,  it i s  shown in Ref.  3 that. 

under widely varying conditionr, the most effective value of 2AL i s  given by 

2AL = 2 h qe (two-log-q rule) 

In addition to being coi~tinuously operated most commercial CDSs a r e  

operated on the cascade o r  multistage principle for  the twofold reason of in- 

creased capacity and separation. A simple cascade (Ref. 7) i s  sketched below. 

Fig. 4 - Schematic of a Simple Cascade (Ref. 7) 

Much the same considerations a s  a r e  discussed for single stage operation 

apply to  the multistage case.  The reader  is referred to  Ref. 3 for theory 

development. The points to  be made here  a r e  that a cascade,  assuming that 

a l l  the cells  a r e  identical, can increase the separation factor and decrease 
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t h e  separati.on t i m e  compared t o  the  s a m e  quanti t ies  f o r  a s ingle column. 

These  effects  a r e  best i l lus t ra ted  by a s imple  example. Taking the  c a s e  of 

sulfur (Case  E3, Table 1). we have t h e  following values of qe and t i  for  a 

s ingle ce l l  

9 e - 1.56 

tf = 24 days  

Suppose we sc* the  production r a t e  of enriched solution a t  one gram, 'day and 

the  cascade  construct ion a t  t h r e e  s tages  beyond the  sc rubber ,  i.e., s c rubber  - 
8 ce l l s ,  f i r s t  s tage  - 4 ce l l s ,  second s tage  - 2 ce l l s ,  t h i rd  s t age  - 1 cell. A 

ce l l  width (B) of 10 c m  is fu r the r  a s sumed  ( see  Appendix B for  discussion 

of influence of ce l l  width in batch and continuous ce l l s ) .  Utilizing the  relat ion- 

sh ip  f o r  m o s t  eff icient  mul t i s tage  operat ion,  (Ref. 3): 

hq = A X ,  

where  if is t h e  total  length of the  cascade  (not counting the  s c r u b b e r )  we  obtain 

a separa t ion  fac tor  of 1.95, i.e., 

I n q  = 3.702 x 1 0 ' ~  x 180 

= 0.6664 

q = 1.95 

To obtain the  cha rac te r i s t i c  t i m e ,  i.e., the  t i m e  before product can s t a r t  t o  

bt withdrawn at a constant r a t e  the  following formula i s  applied. 

where  q1 i s  the  number  of ce l l s  in t'. f i r s t  stage. F o r  the  conditions h e r e  

defined t i s  calculated t o  be 1.7 days.  Thus,  separat ion can  be inc reased  
C 

f rom 1.56 t o  1.95 and the  separat ion t i m e s  dec reased  f rom 24 t o  1.7 days  by 

utilizing a t h r e e  s tage  cascade .  

21 
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5 It  i s  statcd in Ref. 3 that for a separation factor of 10 the single-stage 

apparatus can have a characterist ic t ime  aborrt 2000 t imes that of an ideal 

multistage apparatus. In practice a desired product concentration and pro-  

duction ra te  i s  specified and the  cascade i s  then designed to optimize effi- 

ciency. One drawback of cascades i s  the  expense of the hardware. Especially 

expensive is the construction of columns with the  very narrow slit o r  annulus 

widths. One tremendous advantage of low-g operation would be the lower cost 

of hardware because wider slit o r  annulus widths could be utilized. This aspect 

of CD operation is  discussed further in Section 6. 

Power Requirements 

As mentioned previously the  large amounts of power required for CDSs 

of isotopes and petroleum fractions has been the  chief deterent to commercial  

exploitation of the method. One experimental study of the efficiency of the  

method in petroleum separations (Ref. 8) reported experimental efficiencies 

of about 10.~. The experimental efficiency, Ee, i s  defined in the  cited study 

by the  following set of relationships 
t 

- actual r a t e  of separative work 
Ee - actual r a t e  of heat input 

where 

and c and c a r e  the mole fractions of components 1 and 2 in the original 1 2 
mixture, and 0 is the r a t e  of separation in g r a m s  per  second. The other 

t e r m s  a r e  defined in the notation section. The experimental efficiency 6, 
can be viewed a s  an energy conversion efficiency (Ref. 9,  p. 192). As can be 

appreciated, actual conversion efficiencies of conventional CDS cel ls  a r e  

quite low. Table 3 i l lustrates this point dramatically. In Table 3 the  energy 

requirements per  unit separative work (USW) per  year for various methods 

for uranium isotope separation a r e  given. 

22  
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Table 3 

COMPARISON OF ENERGY REQUIREMENTS FOR VARIOUS 
METHODS OF URANIUM ISOTOPE SEPARATION (Ref. 10) 

* 
See Section 6 for discussion. 

Process  

CDS with UF6 

Gaseous Diffusion 

Distillation 

Redox Ion Exchange 

Electromigration in UCI4 

Molecular Distillation 

Isotope Chopper 

A USW a s  used in the  preceding context is not work o r  energy but a t e r m  that 

indicates the degree of separation achieved, i.e., 

where W is  one-half of the amount of feedstock. Fur thermore,  

SW = W V(c,) + W V(cJ -2 W V(cf) 

Specific Energy Consumption 
kw/kg U S W / ~ ~  

where cf  i s  the mole fraction of desi red component in the  feedstock and the  

V(c) functions a r e  defined a s  

Theoretical 
~ i n i m u m *  

61 

0.073 

LOCKHEED - HUNTSVILLE RESEARCH 6 ENGINEERING CENTER 

Pract ical  

I 

0.266 

>0.62 

>0.71 

1817 

> 0.073 

>> 0.073 



ti 
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$ 

- + 
The units of SW a r e  kilogram8 (Ref. 11). Thus, a S W  of 4.306 kg/hr giver 

235 1 k g / ~ r  of 3% U f rom 5.479 kg/yr feedstock consisting of 0.711?!0 u~~~ i 

(Refs. 11 and 12). 

Another study done in 1957 is of interest  in connection with power require- , 

ments.  Powers and Wilke (Ref. 13) estimated the  costs  and power requirements 

for processing 1000 bbl/day of 50 mole O/o n-heptane-benzene mixture to  give 

products of 7070 purity. Such a separation i s  indicative of separations involving 

aromatics and aliphatic8 and hence petroleum oils. The heat load for th is  ap-  
8 9 paratus design calls  for  5.27 x 10 ~ t u / h r  (5.56 x 10" ~ o u l e s / h r .  3.33 x 10 

kilowatt s). It i s  worthwhile to  mention, however, that relatively low t ernpera - 
0 tures  were  assumed, i.e., Tc = -8 C and TH = 92 '~ .  

The foregoing discussion of CDS efficiency has dealt pr imari ly  with t h e  

experimental or  actual  efficiencies ac?-leved. The question of the  limiting or  

thermodynamic efficiency i s  dealt with in Section 6. 

2 4 
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Section 5 

ADVANTAGES OF SPACE ENVIRONMENTS FOR CDS - 
I 

iia 
Constant Low-g Values 

+ *- In a spacecraf t  o r  on the  su r face  of the  moon steady low-g values a r e  
S 
f 

.1 a* readily attained o r  a l ready prevai l .  In a spacecraf t  the  l eve l  of gravi ty  de -  
h 
j: 

f .- s i r e d  can be achieved by contro!led rotat ion,  ei ther  of the  spacecraf t  o r  of 
. . , , . - 

r. 
t he  appara tus  in which the  gravi ty  is t o  be controlled. 

Values of qe ,  q ,  t k a n d  t for various g levels  a r e  presented  in Table 1. 

It can be seen that lowering g levels  allows an  inc rease  in wall spacings by 

one t o  two o r d e r s  of magnitude. To apprecia te  the  prac t ica l  advantage this 

fact affords,  it will be well to  r econs ide r  the  optimum wall  spacings f o r  sepa-  

rat ions a t  one-g. These  a r e  given in Table 4. 

Table  4 

SUPAMART.' OF WALL SPACINGS AT OPTIMUM G LEVEL O F  ONE 

Powers  and Wilkes (Ref. 13) se t  a wall spacing of 0.0793 c m  a s  a 

prac t ica l  design l imit .  Commerc ia l  labora tory  ce l l s  ( s e e  Appendix E) a r e  

available with wall spacings down t o  0.01 c m .  However, a compar ison of the  

work of var ious  invest igators  (Ref. 14) in which d ranged f r o m  about 0.6 to 

r 

System 

Copper Sulfate 

Sugar in Water 

Cetane-Cumene 

Mercury  

Sulfur 

Methane 

Uranium Haxafluoride 
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d ( c m )  

0.0154 

0.0189 

0.0092 

0.0074 

0.2013 

3.527 1 

0.01 104 
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t o  about 0.04 c m  r e v e a l s  conflicting r e s u l t s  and  l a r g e  devia t ions  f r o m  theory .  

In fu r the r  study of t h e  effect of c e l l  va r i ab l e s  on p e r f o r m a n c e  it w a s  concluded 

that t he  d e s c r e p a n c i e s  probably a r o s e  in t h e  c r i t i c a l  n a t u r e  of t h e  wal l  spacing 

(Ref. 14). Other  ins tances  of anomalous  o r  puzzling r e s u l t s  can  be c i ted  (Refs .  

4 and  15)  which a l s o  undoubtedly have  t h e i r  o r ig ins  in s m a l l  va r i a t i ons  in t h e  

wa l l  spacing. The  p r e s e n t  s tudy a l s o  not eci a n  anomolous  r e su l t  a t  wal l  spacing 

of 0.01 cm (Appendix E). Sma l l  wal l  spac ings  have t h e  fu r the r  d i sadvantage  of 

s m a l l e r  p roces s ing  volumes .  Obviously, if t h e  wal l  spacing c a n  b e  i n c r e a s e d  

in  low-g, s m a l l  wal l  imperfec t ions  wi l l  have l e s s  effect.  M o r e  r e l i a b l e  ce l l  

p e r f o r m a n c e  and  l a r g e r  p roces s ing  volumes  wil l  be poss ib le  a s  a r e s u l t .  

T h e  beneficial  effects  of reducing g rav i ty  on c e l l  p e r f o r m a n c e  have  been 

noted previous ly .  In one s tudy (Ref. 13) a flat p la te  c e l l  w a s  t i l t ed  s o  tha t  t h e  

f o r c e  of g rav i ty  could be reduced  accord ing  t o  t h e  re la t ionship  g = g c o s e  
i: 

w h e r e  8 i s  t h e  angle  between t h e  c e l l  and  the  g rav i ty  v e c t o r ,  i.e., 

Fig. 5 - Ti l t ed  F l a t  P l a t e  C e l l  

Whether  t h e  full benefit of reduced  g rav i ty  can  b e  r e a l i z e d  f r o m  th i s  a r r a n g e -  

ment  is doubtful because  studic; c u r r e n t l y  in p r o g r e s s  show that  a l a y e r  ot 

fluid can be t i l ted only s o  f a r .  F u r t h e r  t i l t ing r e s u l t s  in a breakdown of t h e  

unice l lu la r  flow pa t t e rn  into a mul t ice l lu la r  one. The  quest ion of flow pa t t e rn  

however ,  i s  cons ide red  f u r t h e r  in Section 6. Also ,  g rav i ty  s t r e s s e s  on the 

c e l l  a s  a whole would have a de l e t e r ious  effect on main tenance  of t h e  c r i t i c a l  

wal l  spacing.  

2 6 
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In a number  of o the r  s tud ies  (Refs .  16 through 25)  CD c e l l s  w e r e  packed 

with va r ious  packings such  as  g l a s s  wool, m e t a l  tu rn ing ,  e tc .  Such c e l l s  

showed i m p r e s s i v e  separa t ion  a t  re la t ive ly  l a r g e  wall  spac ings .  It w a s  g e n -  

e r a l l y  concluded that t he  i n c r e a s e d  separa t ion  r e s u l t e d  f r o m  a d e c r e a s e d  

convect ive velocity.  However ,  t h e  s p a c e  taken  u p  by t h e  packing and  t h e  

gel. e ra l ly  l a r g e r  t i m e s  t o  r e a c h  a given l eve l  of s epa ra t ion  gene ra l ly  can-  

ce l led  the  l a r g e r  wa l l  spacing benefit .  I t  should be  noted tha t  packing o f f e r s  

a n  i m m e n s e  advantage fo r  s m a l l  batch o r  l abo ra to ry  sepa ra t ions .  F a i r l y  c r u d e  

c e l l s  can  be used.  F o r  example ,  a 370 copper  su l fa te  solution could not be  

s e p a r a t e d  in an  unpacked cy l indr ica l  ce l l  m a d e  of g l a s s  (0.721 c m  annulus ,  

C a s e  A l ,  Table  1).  Essent ia l ly  comple te  s epa ra t ion ,  however ,  o c c u r r e d  in 

about four hours  when t h e  column was  packed with g l a s s  wool. No spec i a l  

m a t e r i a l s  o r  p rocedures  w e r e  ut i l ized t o  e n s u r e  that c e l l  annulus spacing w a s  

p r e c i s e .  Cel l  var iat ion and misa l ignment  w e r e  undoubtedly g r e a t .  Appendix E 

g ives  t h e  expe r imen ta l  de t a i l s  for  t h i s  and  o ther  s e p a r a t i o n s  pe r fo rmed  during 

t h e  p re sen t  study. 

In s u m m a r y ,  a s p a c e  environment  of fe rs  a l l  of t h e  advantages  of con-  

vec t ive  velocity reduct ion with none of the  d isadvantages  noted for  r educed  

convection operat ion on t h e  ground.  

In addition t o  t h e  foregoing advantages t h e  f u r t h e r  advantage  of al leviat ing 

the  "forgotten effect" wi l l  be  r ea l i zed  a t  low-g l eve l s .  T h e  "forgotten effect" 

o c c u r s  when t h e  components  of t h e  solution a r e  such  tha t  t h e  densi ty  of t h e  

solution concentrat ing a t  t h e  hot wal l  becomes  g r e a t e r  than sur rounding  fluid. 

An overturning a s  remixing of t h e  solution eventually o c c u r s .  In low -g en- 

v i ronment  g r e a t e r  concent ra t ion  cat1 be a c i ~ i e v e d  before  t h e  overturning o c c u r s .  

Gravi ty  Gradien t  

Cont ro l  ove r  g rav i ty  l e v e l s  in a s p a c e  o r b i t a l  environment  wil l  be 

achieved e i the r  by spacec ra f t  rotat ion o r  ce l l  rotat ion.  In such  s i tuat ions 

the  fu r the r  option ex i s t s  of having a s i zeab le  g rav i ty  g rad ien t .  Cons ide r  t he  

gravi ty  g rad ien t  shown on the following page: 
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Hot Cold 

z = z  

Fig .  6 - Schematic Showing One Poss ib le  Direct ion of a Gravity Gradient  

Tile convective flow inside the  CD cel l  would certainly be different than if the  

gravity level w e r e  independent of column height. In the posed situation, the heat  

flow would encounter l e s s e r  grp.vity a s  it r i s e s ,  and the  cold flow would en-  

counter g r e a t e r  gravity a s  it fal ls .  A mathemat ica l  analys is  for CDS in a 

ce l l  subjected t o  considerable gravi ty  gradient  does not exist  at present .  It 

is not possible,  the re fo re ,  t o  evaluate gravity gradient  ef iects  real is t ical ly.  

A speculation, however, may  be offered.  The following equation i s  given for 

heat t r a n s f e r  f rom an  isothermal ver t ica l  plate,  i.e., Fig. , in the  p resence  

of a gravity gradient  (Ref. 26): 

where  Nu i s  the  Nusselt number  in t h e  p resence  of the  gravi ty  gradient ,  

t he  Nusselt  number in the  absence  of a gravi ty  gradient ,  b the  gleavity gradient  

a t  x ,  and a the  gravity level  a t  x = 0. Depending on the  values of a ,  b and x ,  

Nu can be g r e a t e r  o r  l e s s  than Nu. If Nu i s  l e s s  than Nu, convective velocities 
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- Convective 
St reamline s 

Fig.  7 - Schematic of Gravity Gradient  Situation 
Analyzed by Catton (Ref. 26)  

a x e  obviously reduced a s  the  resul t  of a gravi ty  gradient .  Thus,  one u s e  of 

a gravity gradient  may  be t o  move onset of turbulence to gravity levels  g r e a t e r  

the  10 x g allowing ce l l  operat ions a t  gravity levels  g r e a t e r  than 10 x g 
opt' opt '  

It will be reca l led  that operation at ' 10 x g gives g rea tes t  efficiency, i.e., 
opt 

most  s ~ p a r a t i o n  work in the  shor tes t  period of t ime.  P resumably ,  even g r e a t e r  

efficiency would a c c r u e  a t  values g r e a t e r  than 10 x g if turbulence could be 
opt 

avcided. Whether such a possibility is rea l i s t i c ,  however, r equ i res  m o r e  de-  

tailed considerat ion of the  operational mathemat ics .  

Utilization of a gravi ty  gradient  in one-g , though poss ib le ,  would appear  

to  t, a complicntttci a f fa i r ,  necessi tat ing vibration f r e e  mountings.  specia l  

e lec t r ica l  connections, etc .  Rotation of a spacecraf t  o r  of a ce l l  in space ,  on 
I 

1 ! 
t he  other hand, appears  relat ively easy.  

On ea r th  the  power requi rements  for  commercia l ly  process ing sizable 
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c a s e s  of i so tope  sepa ra t ions .  The  idea of util izing s o l a r  ene rgy  t o  heat one 

s u r f a c e  of a CD column and  the  b lackness  of ou ter  s p a c e  t o  cool  t h e  o t h e r ,  

t h e r e f o r e ,  p r o m i s e s  a r e a l  low-g benefit .  A couple of l ikely concepts  f o r  a c  - 
complishing s o l a r  heqting and  outer  space  cooling i s  shown in Fig.  8. Wh2ther 

t he  s i tuat ion depicted in (b) in Fig. 8 i s  d e s i r a b l e  fo r  s epa ra t ions  is undecided 

at p re sen t .  See  Section 6 for  f u r t h e r  d i scuss ion .  

With ingenuity as t o  t h e  a r r a n g e m e n t  and s i z e  of focusing parabol ic  

m i r r o r s ,  a va r i e ty  of t e m p e r a t u r e  r anges  and  ce l l  configurat ions can  be 

achiev,>d. In e a r t h  orb i t  t h e  s o l a r  ene rgy  intensi ty  i s  of t he  o r d e r  of 0.14 

w/crn2 o r  2 ca l /cm2-min .  (Ref. 27). This  amount  of heat  would r a i s e  t h e  

t e m p e r a t u r e  o: a cubic  cen t ime te r  vo lume of w a t e r  2 ' ~  in  one  minute .  The  

a s s u m e d  t h ? r m a l  condit ions shown in F i g .  9 f o r  the  sepa ra t ion  of aqueous 

solutions in a rectangular ce l l  o l  t hc  d i r r l c n s i o ~ r  and m a t e r i a l s  intiicated 

would r e q u i r e  a ,! 32 fold concent ra t ion  of n a t u r a l  s o l a r  rad 'a t ion.  Such a 

l e v e l  of s o l a r  energy  concen. ' t ion would r e q u i r e  a parabol ic  concen t r a to r  

of 2.7 s q u a r e  m e t e r s  in  a r e a .  I l a r g e  concent r a t o r  in s p a c e  should p r e s e n t  

no m a j o r  prot j lem for  without g rav i ty  s t r e s s  a luminized  p l a s t i c  u m b r e l l a  

 collector^ can he ut i l ized.  Design of a t h e r m a l  r ad i a to r  t o  d i s s ipa t e  t he  0.073. 
0 ca l /aec-cm2 requ i r ed  t o  main ta in  a 50 C t e m p e r a t u r e  grad ien t  wi l l  p r e s e n t  

m o r e  of a p rob lem bct not all unsolvable one. 

Radiation Effects  

It is wel l  known that  t h e  varioub rad ia t ions  encountered In s p a c e  envi ron-  

m e n t s  can  produce  pronounced effects  on m a t e r i a l s .  One,  of c o u r s e ,  would not 

suggest go;rg to  s p a c c  just t o  u t i l i ze  t he  radiat ion envi ronment .  However ,  if 

one is contemplating conducting CDS in s p a c e ,  it i s  a r e a s o n a b l e  quest ion t o  

a s k  what fu r the r  advantages  might  r e su l t  f r o m  radiat ion exposure .  

Two m a t e r i a l  a r e a s  suggest  t hemse lves  i?r fur ther  investigation. The  

Sir s t  involves radioisotope product ion by both CDS and rad ia t ion  and t h e  second 

c h e m i c ~ l  synthes is  ar-d subsequent  purif icat ion.  Upon radiat ion wi th  c e r t a i n  

er.ergy nuc lea r  pa r t i c l e s  o r  e lec t romagnet ic  waves ,  a nuc leus  can  b e  conve r t ed  
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a .  F lat  Plate  Cel l  b.  Cylindrical Cel l  (The heating/cooling 
arrangement could just a s  we l l  be 
switched, i . e . .  outer surface cooled ,  
inner cylinder heated) .  

Fig. 8 - Concepts for Utilization of Solar Heating and Space 
Radiation Cooling for CDS 
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- Water 

\ r 0.3175 c m  
Stainless Steel 

-.  
i r (emissivity)  = 0.0 . . = 0.0015 ca l j sec  crn2 Oc/crn 3 k ~ a t e r  

€4 
= 1.0 ' 

k ~ t a i n l e s s  s tee l  = 0.1 .- i l /sec c m Z  Oc/cm a l  (absorbtivity) = 1.0 

Fig .  ?, - Cell Assumed for Sample Calculation of Reqaired Solar 
Energy Concentration for Separations of Aqueous Solutions; 
( a )  overall dimensions, (b) dotail.ed c r o s s  section 

3 2 
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into e i ther  a stable o r  a radioact ive isotope. F o r  example,  4 6 ~ a  i r rad ia ted  

with neutrons produces radioact ive 4 7 ~ a  and g a m m a  r a y s .  17ca i s  useful by 

itself for base  metabol ism studies o r  for production of radioact ive 4 7 ~ c .  The 

usual procedure  for  producing 4 6 ~ a  is by enriching a m i x t u r e  of na tu ra l  iao-  

topes.  4 6 ~ a  exis ts  in na tu ra l  mix tu re  at 0.0033% weight concentration. The 

na tu ra l  mix tu re  i s  enriched t o  levels  of 25 t o  4770. At t h e  40 t o  47% level  

4 6 ~ a  s e l l s  f a r  $880/mg (Ref. 28). The  enriched isotope m i x t u r e  i s  then born- 

barded with neutrons t o  produce *'Ca. 4 7 ~ a  can be  fur ther  bombarded with 

beta par t ic les  t o  produce 4 7 ~ c .  A mix tu re  of the  var ious  C a  and Sc isotopes 

with a specific activity of 1000 r n ~ i / ~  C a  i s  current ly  worth $250,000 (Ref. 28). 

. . 
F o r  space  operation a p r o c e s s  can be conceived whereby a CDS opera -  

. . tion enr iches  a na tura l  mix tu re  of Ca isotopes with the  4 6 ~ a  m e m b e r .  The 

enriched mixture  would then be  subjected t o  neutron radiat icn which i s  gen-  

. . e ra ted  ei ther  by proton space  radiation impinging d i rec t ly  on a t a rge t  o r  by 

neutron radiation produced by a device such as a l inea r  a c c e l e r a t o r  which 

would be run on so la r  energy.  The magnitudes of  v3rious radiat ions likely 

to  be encountered in e a r t h  orbi t  a r e  indicated in Table 5. 

Table 5 

MAGNITUDES OF VARIOUS RADI4TIONS NEAR THE EARTH (Ref. 27) 

Radiation and Energy 

Protons  

0.4 MeV 

4.0 MeV 

34.0 MeV 

Elect rons  

>O.SMeV 

Alpha P a r t i c l e s  

E a r t h  Orbit  Flux 
2 (par t ic les /cm - sec  \ 

Flux of Alpha P a r t i c l e s  with Energy > 2.09 MEV = 2.3 - 4 
Flux of Protons  with Energy > 0.52 MEV 
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The fluxes indicated in Table 5 a r e  substantialiy lower than those 
5 
f 7 -  

produced by nuclear reac tors  and part icle generators  8uch a s  the Oak Ridge 
K - 86-inch cyclotron. The cyclotron can produce a 17 MeV proton flux of 7.8 x 5 1. 6 10 part icles crn2-sec (Ref. 29). To simulate the radiation of 23 MeV in the  - - 
3 t 2 
n 4 Van Allen belt the cyclotron was run at a 3 part icles/cm sec flux density 
b i. 

t (Ref. 29).  Exposure t o  cyclotron radiation, however, a r e  usually quite short ,  
5 $ j -  

i i on tne  order  of a few minutes. The cyclotron and other devices producing 
4. radiation on earth,  moreover,  consume enormous amounts of energy. The 

I . . cyclotron, for example, uses  a 1500 amp current  t o  energize a 400 ton magnet, 
8 

i . . and a 4300 amp  current for a magnetic deflection coil. Additional power i s  

. . further required for cooling and proton production. The Oak Ridge r e sea rch  
4 

L reactor  which can produce a neutron flux of 1.6 x 10 neutrons/crn2-sec con- . . 
sumes 30 M W  operating power (Ref. 30). It can be appreciated that radiation 

t reatments  on ear th  can be costly. 

Although earth reactors  can achieve higher fluxes than a r e  likely t o  be 
. . achieved ~n space, space flw.es a r e  sufficient to  produce usable amounts of 

radioactive isotopes because longer exposure t imes  can be used. Once in 

. . space the radiation is "free" for a s  long a s  we choose. 

The advantage of space radiation in a second a r e a  of possible applica- 

tion (the chemical synthesis and subsequent purification) conceivably could 

l i e  in the fact that low levels of radiation for long periods of t ime can be 

easily obtained in space. Past  research  has shown that some free-radical  

type chemical processes  depend on the dose ra te  in an inefficient way: a s  the  
. . dose ra te  i s  increased the yield of product per  100 eV unit of radiation de-  

b c reases .  The proposed solution to  this problem (Ref 31) is  increased radia-  

l l . . tion t ime,  a r e a ,  or volume. The proposed solution i~ equivalent to  decreasing 

flux density which can easily be accomplished in space. The proposed solution 
1 in ear th  operation would result  in increased cost for equipment and holdup t ime.  . .* 

i 1 :  It may be mentioned that investigation of radiation on the ground has 

found few important product a r ea s .  Specialty isotopes for medical and t r a c e r  

34 
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activities, and uranium and plutonium for energy production, and nuclear 

weapons constitute the chief product a reas .  Activities such as food process  - 
ing and chemical synthesis have proved uneconomical for a variety of reasons 

but an important one i s  the  cost of radiation (Ref. 31). The cost of radiation 

since Ref. 31, used a s  the  chief source in this repor t ,  was written in 1959 has  

undoubtedly skyrocketed. The idea of going to  space to  perform CDS in con- 

junction with radiation treatment,  therefore,  might for some processes  pre- 

sent at tractive advantages. 
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Section 6 

THE QUESTION O F  CDS EFFICIENCY IMPROVEMENT BY AN ORDER 
O F  MAGNITUDE OR MORE B Y  ALTERED CONVECTION 

The question of whether CDS efficiency, i.e., separa t ion  level  achieved 

p e r  unit of heat input, can be  boosted by an o r d e r  of magnitude o r  m o r e  i s  one 

that has intrigued and employed the  energies  of a number  of invest igators .  In 

t h e  period 1939- 1955 a minor  cont roversy  existed on whether turbulence o r  

flow pat terns  other  than unicel lular  could inc rease  substantial ly t h e  separa t ion  

efficiency of CD ce l l s  (Ref. 3,2p.  219-220 and Refs. 5 .  32-37.  A number  of 

experimental  s tudies in t h e  c i ted  re fe rences  r epor ted  substantial  i n c r e a s e s  

in separat ion levels  a s  the  r e su l t  of column design a l te ra t ions  such as packings,  

b a r r i e r s ,  baffles, or space r s .  The question of eff iciencies,  however, was never  

resolved conclusively, i.e., i t  was never  demonst ra ted  conclusively '.hat the  

modifications could zchieve a substantially higher level  of separa t ion  of a given 

amount of mix tu re  in a s h o r t e r  t ime.  Before proceeding it will  be well  t o  re- 

view the  theore t ica l  definition of the  limiting thermodynamic separa t ion  effi- 

ciency. This was der ived by Onsager (Ref. 38). Onsager 's thermodynamic  

efficiency for  any smal l  volume of mix tu re  cons i s t s  of t h e  following ratio: 

- - r a t e  of d e c r e a s e  in entropy d u e  t o  separa t ion  
r a t e  of i n c r e a s e  in entropy due t o  heat conduction 

By appropriately incorporating t h e  t r anspor t  r a t e s  by t h e r m a l  and o rd ina ry  

diffusion, Onsager obtained t h e  following l imi ts  for So: 

1 2  
S o < z a  c c D12 

1 2 AT (for g a s e s )  

In energy t e r m s  the  relat ionship i s  (Ref. 9)  

2 - 
a D12 C 2  R(TH - TC) P 

E0 5. (for g a s e s  o r  liquids) 
4G ACT 

3 6 
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where  c and c a r e  the  mole  fract ions in the  unseparated mixture .  Equality 1 2 
obtains when 

that  is when the  f l u x  due t o  the rmal  diffusion i s  twice the  ordinary  diffusion. 

It m a y  be well t o  mention that  t h e  entropy efficiency goes  t o  z e r o  a t  infinite 

t i m e ,  i.e., a t  equilibrium o r  s teady s t a t e  no m o r e  separa t ion  work is  being 

performed.  

Jones and F u r r y  (Ref. 3, pp. 198- 199) de termined the  entropy ra t io  for  

an  ideal ,  conventional CD ce l l  (no a s y m m e t r i e s  o r  imperfec t ions) ,  a s s u n ~ i n g  

that t h e  product c c 2  v a r i e s  l i t t le  along the  ce l l ,  and showed that an ideal  

conventional C D  cel l  would opera te  a t  about 7070 of the  Onsager  efficiency. 

They noted that a maximum Onsager efficiency would be approached only 

once during a separat ion,  at t h e  t i m e  

The average  efficiency theoret ical ly achievable i s  d iscussed fur ther  by Jones 

and F u r r y  in Ref. 3. 

White and Fellows (Ref. 9 )  de termined the  experimental  efficiencies of 

single CD ce l l s  separat ing p e t r o l e t ~ m  type mix tu res  and showed that they w e r e  

of the  s a m e  o rde r  of magnitude a s  t h e  thermodynamic limiting efficiecies. 

F u r t h e r m o r e ,  they concluded that  the  experimental  efficiency of a "constant 

separat ion" cascade  would be t h e  s a m e  a s  for one single ce l l  in the  cascade .  

Consideratior. of the  preceding information leads  t o  the  conclusion that 

if the  thermodynamic efficiency of a CD separa t ion  i s  inc reased  because of 

a l t e red  flow pat tern ,  it can only be  the  resul t  of ( a )  introduction of a s izable 

c c variat ions along the  column, o r  (b)  introduction of another  separa t ion  1'  2 
mechanism (in addition t o  t h e r m a l  diffusion) o r  ( c )  both. The Onsager t h e r m o -  

dynamic efficiency, it will  be reca l led ,  depends on the  product of the  mole  
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fract ions c and c The product va r i e s  most  in the  r ange  where  c o r  c 
1 2' 1 2 

a r c  l e s s  than about 0.3. In t h e  range  0.3 t o  0.7 t h e  product c l .  c 2  i s  vir tual ly 

const ant.  

One possible flow pattern which might  va ry  the  concentrat ion appreciably 

along a s e l l  i s  sketched below: 

Hot Cold 

F ig .  10 - Schematic of an In ternal  Cascade  

Cascading can have an appreciable  effect on boosting separa t ion  levels ,  a s  

previously discussed.  The mult icel lular  pat tern shown in addition t o  p r o  - 
viding a cascading mechanism m a y  a l s o  be capable of sustaining in ternal ,  

dynamic p r e s s u r e  gradients  of sufficient magnitude t o  allow some  significant 

p r e s s u r e  diffusion. P r e s s u r e  diffusion i s  the  phenomenon of separat ion by 

means  of a p r e s s u r e  gradient ,  analogous t o  t h e r m a l  diffusion in which sepa-  

ration i s  achieved by a t e m p e r a t u r e  gradient .  P r e s s u r e  diffusion i s  usually 

not considered unless s izable  p r e s s u r e  gradients  such a s  genera ted  by 

centrifuging a r e  involved. The  contribution of p r e s s u r e  diffusion coupled 

with t h e r m a l  diffusion in a sustained convection field, however,  may  possibly 

be significant. F o r  example,  Chapman (Ref. 39) notes that  for  equal values 

of ~ P / P '  and ~ T ' / T  p r e s s u r e  diffusion i s  f rom 2.5 t o  3.2 t i m e s  m o r e  power 

ful 3s  a separat ing force  than t h e r m a l  diffusion. Consider  the  hydrostat ic  

p r e v s u r e  at the  bottom of a 100 cm long column of water .  This  would be 

given by the  following formula: 
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= '{I a t m )  t p g h  = 1.098 a t m  

In other  words  a column of water  100 c m  high in a gravitat ional  field has  the  
0 s a m e  separat ing power a s  a t e m p z r a t u r e  difference of 88.3 C.  A t e m p e r a t u r e  

gradient  of 8 8 O ~  i s  a substantial  separat ing fo rce  in aqueous solutions when 

coupled with a convective field. The expectation of some  significant p r e s s u r e  

diffusion separat ion in CDS as  the  resul t  of coupled hydrostat ic  and dynamic 

p r e s s u r e  gradients .  t he re fo re ,  m a y  not be too  unreal i s t ic .  One experimental  

t e s t  of the possibility that  s m a l l  p r e s s u r e  gradients  coupled with sustained 

flow would i n c r e a s e  separat ion efficiency was conducted in  the course  of the  

p resen t  study. As p a r t  of an  experimental  plan t o  de termine  p rac t i ca l  ~ r o b l e m s  

involved with var ious  type CD ce l l s  and t o  t e s t  the effect of mult icel ls  on sepa-  

ration efficiency a rotated column was  constructed (Appendix E).  At slow ro ta -  

tion ra tes  the  basic na tu re  of the  unicellul.ar flow would not be disturbed.  The  

s m a l l  p r e s s u r e  gradients ,  however,  would be. Resul ts  of t e s t s  a t  slow rotat ions,  
- 3 equivalent to g levels  in the  range of about 10 

gg' 
indicate that  s m a l l  p r e s s u r e  

gradients  pc rpcndicular  t o  the  e a r t h  gravity hydrostat ic  p r e s s u r e  gradient  appar  - 
ently can  affect separa t ion  efficiency (Appendix E). M o r e  conclusive data ,  how- 

e v e r ,  a r c  required.  

Thc  present  study at tempted to verify experimental ly tha t  separa t ion  eff i-  

ciency could be inc reased  by introduction of a mul t ice l lu lar  flow pattern.  The 

impetus f o r  th is  work was  occasioned by the  relat ively r ecen t  work of Elde,  
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( I l c - T .  40). Eldc r fount1 that depending on the magnitudes of th ree  dimension - 
l v s h  l ) ; ~ r a n ~ ( ~ t e r s  tlirce convcctivc regimes a r e  possible in a long, thin slab 

of f lu id .  'I'hc- thrce-dimensionless pa ramete rs  a r e  P r ,  the  Prandt l  number 

(-  v / k ) ,  A ,  thc aspect  ratio (=  length of cell/thickness of ce l l ) ,  and Ra, the 
3 Rayleigh number (=  (3 g A T  d /~k). F o r  l a rge  aspec t  rat ios in the range of 

3 
about 60 and Prandt l  numbers of about 1C (oils)  the  following general  flow 

patterns were  observed. 

Cold Hot Cold Hot Cold 

Fig. 11 - F l o w  Pa t te rns  i n  a Thin Slab a s  a Function of Rayleigh Number 

Cohen (Ref. 6 ,  p. 13) briefly considered the effect of the following cel lu lar  flow 

Fig.  12 - Ccllular  Pa t t e rn  Postulated by Cohcn (Ref. 6 )  

40 
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Cohen concluded that such a flow would ser ious ly  d e c r e a s e  separat ion.  The 

present  author ag rees .  The effect of  such a flow coupled with an overa l l  

unicellular flow a s  is shown in Fig. l l b . ,  however,  i s  not obvious. The r e s u ' ~  

of a flow pat tern  such as shown in Fig. 1 l c  is a l s o  not obvioue. 

The resu l t s  of the  present  experimental  work of mult icel lular  efficiency 

on separat ion efficiency a r e  unfortunately inconclusive because of the  diff icul t ies  

encountered in generating mult icel lular  flow in aquaous solutions. The condi- 

t ions for  generat ing mult icel ls  in lnw Prand t l  number  fluids, i.e., aqueous 

solutions a r e  apparently not t h e  s a m e  a s  for  high Prand t l  numbers .  F u r t h e r  

detai ls  a r e  given in Appendix E, (See d iscuss ion in Flat P l a t e  Ce l l s , )  

Although experimental  verification of mul t i ce l l  efficiency was  not achieved 

in the  preser,t s tudy,  a "numbers  gameM given in Fig .  13 ( f i r s t  introduced by Grew 

and Ibbs (Ref .  41, p. 9 2 ) )  to  i l lus t r a t e  the  principle of CDS provides fu r the r  suppor t  

for  the expectation that  mul t ice l l s  can  improve CD efficiency. 

In connection with improving CDS efficiency and a l s o  in connection with 

CDS operat ions in low-g environments,  it w a s  of in te res t  t o  seek  an  answer  

for  the  question of how rotation might  affect separat ion.  (In a space  environ- 

men t  c e l l  rotation can eas i ly  b e  accomplished).  Although a number of previous 

studies (Refs.  42 through 45) have repor ted  improved separa t ion  a s  the  r e su l t  

of rotating e i ther  an en t i r e  CD column o r  only one wall  (i.e., e i ther  the  inner  

o r  outer  cyl inder would be rotated while the  other remained s ta t ionary) ,  the  

efficiencies obtained a r e  obscure .  Especial ly intr iguing,  however, is  the  work 

of Sullivan, Ruppcl, and Willingham (Ref. 45) because  mul t ice l l s  o r  s p i r a l s  

apparently did play a m a j o r  role in  t h e i r  separa t ions .  T h e s e  w o r k e r s  used a 

conventional ver t ica l  cyl indr ica l  column, but the  inner  cyl inder w a s  rotated 

in some  of the experiments.  Definite i n c r e a s e s  of separat ion up t o  a fac tor  

of about 10 w e r e  observed.  Sullivan e t  al., noted in t h e i r  rotated ce l l s  "moving 

sp i ra l s  which have a secondary motion that  gives them the  appearance  of a co i l  

. . . . a t  optimum speed the  motion of the  l iqu i i  i s  i n  the f o r m  of l a y e r s  of r ings  

with each resembling two c i r c u l a r  coi l s  wrapped in opposite directions." A apace  
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UNICELLTJLAR CONVECTION 

After 8th 
Diffusion 

Initial After 1st After 1st 
Diffusion Convection 

MULTICELLULAR CONVECTION 

Initial 

f----- 

After let Diffueion 

After 1st Convection After 4th Diffusion 

Fig. 1 3  - Schomatir Aft. Y Crew and Ibbs (Ref. 4 1 )  Illustration of Concentration 
Changes ~n a CD Cell with Unicellular and with Multicellular Convec- 
tion: A 6 %  Separation a s  the Result of Thermal Diffusion is  Assumed 
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of I t  c l e a r ,  apparently mot ionless  fluidt1 in between both s p i r a l  flows was  

observed.  It  is a l s o  interest ing t o  note tha t  in  two previous studies i n  which 

the  inner  cyl inder of a CD column wag wrapped with a s p i r a l  w i r e  (Refs. 46 

and 47a) higher levels  of separat ion and g r e a t e r  r a t e s  of separa t ion  w e r e  r e -  

ported. Efficiency improvements ,  however, w e r e  not  conclusively established.  

In space  it  woula be  m o r e  des i rab le  t o  rotate the  whole column ra the r  

than just one wall. A spiral ing flow, however,  can  be generated in  an  appara tus  

in which both cylinders a r e  rigidly connected and rotated around the i r  common 

ver t ica l  axes ,  while ei5her a positive o r  negative radia l  t e m p e r a t u r e  difference 

i s  maintained between both cyl inders?  A thorough numer ica l  investigation of 

such flows has  been made  by Will iams (Ref. 47b). Essen t i a l  f ea tu res  of Will iams'  

ccmputat ions have been confirmed experimental ly by Koschmieder  (Ref. 47c). 

It  was  found in thcse  exper iments  that  the  centr ifugal  fo rce  has  a substantial  

effect on the  circulat ion in the annulus. The t rans i t ion  t o  a three-dimensional  

vortex flow was found to  depend strongly on whether  the t h e r m a l  circulat ion 

was e i ther  pa ra l l e l  o r  opposite to the  centr ifugal  circulat ion which moves  w a r m  

light fluid inward and colci heavy fluid outward, just a s  in  a centrifuge. 

The original  intent of thc  p resen t  study was  t o  experimental ly invest igate 

the effect of ccntrifugially generated sp i ra l s  on separat ion.  Development of 

apparatus and p rocedures ,  however, w e r e  m o r e  involved than anticipated 

(Appendix E ) ,  s o  th is  par t  of the study m u s t  necessa r i ly  be postponed for  the 

future. 

To  si i rnmaiize,  i t  appcar s  that a reasonable c a s e  fo r  improvement  of 

CDS efficiency by means  of flow pat tern  a l te ra t ion  can be  made .  The  m a t t e r  

certainly w a r r a n t s  fur ther  study becausts of i t s  possible impact  on r e d u i n g  

the energy rcqui remcnts  f o r  uranium isotope separat ion.  Var ious  methods  

for  separat ing uranium isotopcs a r c  cu r ren t ly  being intensivelv investigated 

because of the  urgent energy c r i s i s  situation. Conventional CDS, however,  

-5, -a. 

If the  inner  cyl inder i s  cold and the outer  hot, the  t empera tu re  gradient  i s  
positive. If the  r e v e r s e  is t r u e ,  the t empera tu re  gradient  is negative. 
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was clis~nissed a long t ime ago, a s  being too energy costly. The matter  is 

important a lso from the viewpoint of space processing. Although unlimited 

"freeH solar energy will be available in space which can be readily ,.allected, 

maintaining a cold wall by radiation to outer space will be m<Jre difficult. 

Obviously, any improve~nents in separation efficieny wduld be advantageou.?. 
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Section 7 

CDS VARIATIONS AND ALLIED TECHNlQUES 

In the preceding section improvement of CDS efficiency by means of 

convective flow pattern alteration was considered. In this  section some CDS 

variations and allied techniques will be discussed.  

Electrophoresis-Convection and CDS Plus Electrophoresis  

The technique of electrophoretic separations i s  quite s imi la r  t o  sepa- 

ration by a temperature  gradient. As a ma t t e r  of fact,  the idea of coupling 

the  two driving forces was proposed a s  a method of determining Soret coeffi- 

cients (Ref. 48). Most practical  electrophoresis  separations a r e  conducted 

in the absence of convection. Electrophoresis  coupled with a forced,  laminar  

convective flow, however, is a lso  utilized. The ideal of coupling CDS and 

electrophoresis was inevitable. C ros se r  , Powers ,  and Prabhudesai  (Ref. 49) 
report  the resul ts  of a study in which the apparatus utilized had the following 

essentials: 
Buffer Solution In 

Convective Flow 

Semi -Permeable  
Membranes  
Anode (t) 

Cathode 

Fig. 14 - Es scntials of a El ectrothermogravitational Elec t ro -  
phoresis  Column 
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I t  can be appreciated that with such a relatively complicated sys tem that  it 

will  take m o r e  than t5e f i r s t  reported studies t o  adequately determine the 

potential of the technique. The f i r s t  study repor ts  unsurprisingly a number 

of problems. Much of the difficulty in obtaining agreement  between theory 

and experiment appears  to be the resul t  of the  l a rge  ce l l  spacings used in 

the experimental  work. Such difficulty suggests that  this  technique a l so  will 

profit  fromi low-g processing. 

The mate r ia l  sys tem used in the cited experimental  study was  a bovine 

albumin system. The technique probably would be  ea s i e r  to  develop using 

sys tems such a s  aqueous electrolyte solutions, liquid me ta l  solutions, o r  

molten sa l t  sol~lt ions.  Each  of these  l a t t e r  sys tems  i s  capable of conducting 

electr ici ty and therefore  is a suitable candidate fo r  separation by th is  tech- 

nique. Possibly the technique a l so  may eventually be suitable for  isotope 

separations. Big questiors about the technique remain io be answered,  

especially the question of efficiency. 

CDS Coupled with Chemical  Reaction 

A few studies we re  done in this a r c a  in the 1940s and 1950s. As f a r  

a s  i s  known, no fur ther  studies have been since accomplished. The coupling 

of chemical  reactions with CDS can be a means  to accomplish some unique 

separations.  F o r  example, oxygen isotopes occur naturally a s  mixed mole -  

culcs,  i.c., 018  016.  At a hot sdrface,  however, the following reaction occurs  

(Ref .  1 )  

Thc separating cffect of CD dr ives  thc equilibrium toward the right, with the 

r cn l l t  that practically pure 0 1 8  i s  obtained a t  one end. Other separations 2 
rcpurted include C13 by the exchange reaction (Ref. 50) 

LOCKHEtD - HUNTSVILLE RESEARCH 6 ENGINEERING CENTER 



LMSC -HREC TR D49652 1 

and N by the  exchange reat ion (Re f .  51) 

As  a method of separat ing isotopes,  however,  apparently not much advantage 

is rea l ized  over  CDS without chemical  exchange (Refs.  49 and 50). 

Hirota and Kimuro (Refs. 52 through 55) c a r r i e d  out hydrogenation and 

polymerization react ions of acetylene and of methane.  A desulfurization r e -  

action was a l s o  repor ted  a s  having been studied (Ref. 54). CDS was used in 

t h e s e  studies t o  prevent decomposition of f r e e  radica ls  in the  hot region and 

to  m a k e  them polymer ize  in the  cold regions.  Acetylene w a s  shown t o  be 

converted into liquid hydrocarbons "almost perfectly." 

It s e e m s  a shame  that  fur ther  s tudies w e r e  not pe r fo rmed  in th i s  a r e a  

with m a t e r i a l  sys tems  other  than isotopes.  In s y s t e m s  in which molecules  

a r e  l a r g e  and complex, fas t  separa t ion  r a t e s  genera l ly  apply. The possibility 

of controlling reaction equil ibrium by CDS, the re fo re ,  appears  a s  an  exciting 

possibility in many biological and polymer a r e a s .  

CDS Coupled with Adsorption 

As f a r  a s  is known, no one has yet coupled CDS with adsorption.  Recent 

work in the  a r e a  of p a r a m e t r i c  pumping, however, suggests  that  CDS might 

offer new possibi l i t ies  h e r e  a l so .  P a r a m e t r i c  pumping as a separat ion t ech-  

nique consis ts  of the  following essent ia ls  a s  shown i n  Fig .  15 (Refs. 56 and 57). 

The  liquid to  be separa ted  i s  contained within the  ~o1um.n and is al ternat ively 

pumped up and down. The a l t e rna te  heating and cooling of the  adsorbent  c o m -  

bined with t?.c al ternate  fluid flow resu l t s  i n  a separa t ing  action. 
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Column Containing 
Porous  Adsorptive 
Mate r i a l  

Fig.  15 - P a r a m e t r i c  Pumping Essen t i a l s  

In a CD ce l l  flow r e v e r s a l  could easi ly be accomplished by revers ing  

the  hot and cold walls.  The effect of t h e r m a l  diffusion in such a column, 

however, i s  difficult t o  imagine. Possibly by p roper  phasing of the  flow re- 

v e r s a l ,  t h e r m a l  diffusion could be m a d e  an  added separa t ive  force.  T h e r e  

i s  s t i l l  another  possibility. A fo rm of na tu ra l  convection cal led overs table  

could perhaps  provide the  mechan i sm for  al ternat ing flow. In overs table  

convection flow r e v e r s a l  o c c u r s  naturally. 

It i s  conceiveable that  a packed CD ce l l  a l r eady  contains a m e c h a n i s m  

for  separat ion.  Consider  the  following CD cel l .  

LOCKHEED - HUNTSVILLE RESEARCH & ENGINEERING CENTER 



Hot 

LMSC -HREC TR D49652 1 

Cel l  
with 

Packed 
Adsorbent 

Fig. 16 - Adsorption and CDS 

Say the  heavier component i s  a l so  the  one most  absorbed by adsorbent.  Both 

the rmal  diffusion and adsorption equilibrium, the refore,  would favor driving 

it t o  the  cold wall and hence t o  the  bottom of the  cell. 

In the  present  study a number of experimental  s tudies we re  conducted 

on packed columns in connection with the  question of CDS efficiency improve-  

ment.  In one case ,  as previously mentioned, a 0.721 c m  annulus column gave 

no separation of an aqueous copper sulfate solution without packing, and a 

rapid,  almost  complete separation (about 18 hours )  when the  column was 

packed with gldss  wool. Table 1 shows that a 0.721 cm column could separa te  

a qqueous copper sulfate solution to a q level  of 4.57 in about 22 hours if the  
e 

gravlt  y level we re  reduced t o  9.88 x 10-5 . Conceivably, the  observed 
gg 

separation was the resul t  only of reduced convective flow velocity. The almost  

complete separation noted, however, i s  surpr is ing for a qe  value of 4.57 (Ap- 

pendix E gives experimental  detai ls) .  The possibility presented itself that 

perhaps adsorption on the  g l a s s  wool was boosting the separation efficiency. 

More  detailed analyses of var ious  separat ions  in packed columns i s  indicated. 
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The start l ing rapid experimental  separat ion of an  aqueous sa l t  in a 

packed column of relatively l a rge  annulus with a relatively smal l  temperature  

gradient suggests  that  packed columns m a y  offer the possibility of easy desalin-  

ation utilizing so la r  powcr. Also the possibility presents  itself of isotope sep-  

ara t ions  in packed columns utilizing congruently melting compounds such a s  

Li NO3 3 HZO. (Possibly a s imi la r  uranium compound exis ts  .) Such isotope 

separations probably would be  much l e s s  energy consuming than those using 

molten sa l t s  of compounds such a s  U F 6 .  

Field Flow and Thermal  Fie ld  Flow Fractionation (FFF and T F F F )  

The concept of using a gravity field and a parabolic flow field to  sepa-  

ra te  mac  romolecules i s  dubbed field flow fractionation (FFF). The concept 

was introduced in 1966 by Giddings (Ref. 58). The essent ia ls  of the technique 

a r e  shown in Fig.  17 below (Ref. 59). 

Solute A Solute R 

Fig. 17 - Schematic of a Field Flow Fractionation 

. . In Fig.  17 the solutes ,migrate .it different ra tes  in the field flow depending on 

thei r  penetration into zones of fas t  flow. It is interest ing to note in connection . . 
, 1 , 

with FFF that a stratification of fine par t ic les  can be achieved if a counter-  
: 2.- 
f cur ren t  convective flow i s  introduced (Refs. 60 and 61),  i.e., 
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Uniform 
Opacity A 

/ (Lighter  Pa  

Cold 

/ ;.,a',"iyI3 
(Heavier Par t i c les )  

Fig. 18 - Schematic of Stratification Sedimentation 

Also of in teres t  in connection with FFF i s  the phenomenon of "tubular pinch 

effectv (Refs. 62 and 6 3 ) .  This  phenomen~i.  consis ts  of suspensions of spheres  

forming necklace-like s t r ings  of part icles in a flow in a tube whose radius is 

not constant. 

The the rmal  field flow fractionation ( T F F F )  technique i s  closely allied 

t o  the CD technique. In T F F F  (Ref.64) a temperature  difference is super-  

imposed ac ro s s  a parabolic o r  near-parabolic velocity profile. T F F F  i s  

intended fo r  sepa rating m a c  romolecule s , having been successfully demon - 
stratcd with polystyrene solutes in toluene. 

Ccncral  Comments on CDS Variations and Allied Techniques 

None of the mentioned CDS variat ions and allied techniques have been 

employed on a commercia l  scale a s  f a r  a s  i s  known. I t  i s  felt  tha t  the reasons  

they have not found commercia l  applications a r e  ei ther because the technique 

i s  too new (thermoelectro CD,  parametr ic  pumping, T F F  o r  T F F F )  o r  because 
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the concept was ahead ot its time (CD coupled with chemical reactions). The 

simple basis of the CD technique coupled with the fact that relatively low grade 

heat i s  a l l  the energy input that is required to drive the required countercurrent 

flow indicates that research in this a rea  would yield profitable benefits. I t  is 

also expected that the mentioned CD variations will benefit f rom low-g environ- 

ments in manners similar to conventional CD. 
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Section 8 

TECHNOLOGICAL APPLICATIONS AND RECOMMENDATIONS 
FOR FURTHER STUDIES 

Sp? c e Applications 

The following a r e a s  of space  process ing applications appear  

promising a t  present :  

Space process ing of biologicals by conventional C D  
o r  CD coupled with FFF. The main  advantage would 
be l a r g e r  volumes than could be  used on ear th .  

Separat ion of ce r t a in  special ty i so topes ,  sulfur  36 
f rom sul fur  32 f o r  example. The  l a r g e r  processing 
volumes than possible on e a r t h  and the  " f r e e "  so la r  
energy in  space  would be v e r y  advantageous. 

C D  in space  cnvi ronments m a y  a l s o  off, + -  advantages f o r  purification of s e m i -  

conductr) r m a t e r i a l s .  On ea r th ,  power k~ungry techniques l ike zone melt ing a r e  

c ~ m m o n l y  used. Before a tlufinitc s ta tement  can  be  m a d e ,  however, a m o r e  

thorough look into possible problems i s  required.  In t h i s  vein, a space  CD 

tvc hniquc can be imagined whereby a f r e e  floating molten sphere  would be 

subjcctud to  a t e m p e r a t u r e  gradient ,  a s  shown i n  the following sketch. 

Hot 

Cold 

Fig.  19 - Space CD of a Floating Molten Sphere  
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Thc imposed t empera tu re  gradient  would genera te  the  indicated convection 

cur  rents.  The convection c u r r e n t s  in  th is  c a s e  would be  dr iven not by gravity 

but l ~ y  su r face  tension. In the  p resence  of t e m p e r a t u r e  o r  concentrat ion g rad-  

ients ,  su r face  tension gradients  develop which can d r ive  fluid flow (Refs. 6 5  

through 68). In th is  c a s e  another  mechan i sm in addition t o  t h e r m a l  diffusion 

(and p r e s s u r e  diffusion) fo r  separa t ion  would ex i s t  - su r face  adsorption.  T h e  

efficiency of such a technique, the re fo re ,  could perhaps  s u r p a s s  anything 

that could be done on ear th .  A number  of problems,  of c o u r s e ,  immediately 

come  to  mind,  the  ma in  ones being how t o  keep a molten m a s s  positioned 

without introducing sizable d is turbances  and how t o  keep vapor l o s s e s  a t  a 

minimum. Such problems,  however,  a r e  not seen a s  insurmountable. Study 

of t h e r m a l  separa t ion  in floating molten spheres  possibly would a l s o  genera te  

data that  would be  of i n t e r e s t  to geophysicists .  Such a study might  help t o  

elucidate how var ious  m i n e r a l s  w e r e  originally deposited. 

Ground Applications 

F o r  SOIIIC obsciire r eason ,  CD h a s  never  been adequately explored a s  a 

technique for  separating aqueous solutions. The reason  i s  ha rd  t o  understand 

I~ccausc  thc t h c r n ~ a l  diffusion fac to r s  cer ta in ly  a r e  much  l a r g e r  f o r  aqueous 

solutions than they a r e  fo r  isotopes. In any c a s e ,  the  r a t h e r  s tar t l ing fas t  

scpara t ions  ol  coppcr sulfate in w a t e r  in a packed column with the relatively 
0 low tcnipc:raturc gradient  of about 40 C indicates that  so la r  energy and sinlplc 

packccl ce l l s  can  be used f o r  easy  wa te r  desal inat ion.  A thorough understanding 

of separa t ion  in porous media  might  be useful a l s o  in a r e a s  such a s  pollution 

studies (i.c., polluted wa te r  seeping through the ground),  f e r t i l i ze r  d i s t r i b u t ~ o n ,  

and s o  on. Also in connection with the  overlooked potential of C D  with aqueouc 

solutions, isutopcs m a y  perhaps  be m o r e  economically separa ted  by C D  if ar. 

appropr ia te  hycl ra ted ,  congruently melting compound can be found. FO r cxample , 
0 l i t l~ ium ni t ra tc  t r ihydrate,  L i  NO3 3 H 0 ,  is  a compound that  m e l t s  a t  30 C .  I f  

6 2 
7 sul)jcctecl to  C;D, possibly Li coulcl l ~ c  scpara tcd  f rom I,i with mode.-? t e m p e r -  

a t u r c  graclicnts, i .e. ,  T~ -- 10oOc,  TC- 3 0 O ~ .  
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The teclmique should a lso be considered for uses of the relatively low 

potential heat that i s  commonly thrown away and becomes a problem a s  thermal  

pollution. Some possibilities include: 

Fractionation o r  purification of various oils with 
heat f rom generating plants o r  nuclear reaction 
plants . 
Conducting various polymerization reactions in 
conjunction with CD with waste heat. 

Finally, CD may offer a pbtential a s  an energy conversion device. Consider 

the following situation: 

PackeG Cell 
Copper Electrode 

L Copper Elcctrodc 

F i g .  20 - An Electrolytic CD Solar Concentration C c l l  
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The CII separat ion of copper  sulfate presents  the  possibility of a self renewing 

collccntration ccl l .  The question h e r e  is how fas t  can  separa t ion  work be  done. 

Th i s  would determine  how much power could be drawn. An in teres t ing  aspec t  

o f  t he rmal  diffusion in th is  r ega rd  is the  fa i r ly  extensive l i t e ra tu re  on poten- 

t i a l s  developed by non-convective t ~ t h e r m o c e l l s t l  (Ref. 69). The  subjec3c i s  

bcyontl the scope of thc  p resen t  study. It  is interest ing t o  note,  however,  that  

a nonconvectivc the rmoce l l  comprised  of lead e lec t rodes  and 30% sulfuric  acid 

is repor ted  t o  have a m e a n  Seebeck coefficient of 2870 /LV/'C. The  maximum 

efficiency i s  reported a s  6.16%, comparable  t o  10% for  the  bes t  thermoelec t r ic  

gcnera to r s  cu r ren t ly  used (Ref. 70). An additionai sidelight i s  that  a C D  appa - 
ra tus  might have potential a l s o  as a s to rage  device. A CD c e l l  could concen- 

t r a t c  e lcc t ro ly tc  on sunny days ,  the pswer  being drawn on cloudy days.  In this 

a r e a ,  packed CD c e l l s  would cer ta in ly  be indicated. 

Rec ommendcd F u r t h e r  Studies 

With rega rd  to space  applications it wil l  bc highly desirable a t  the f i r s t  

opportunity to experimental ly t c s t  thc  theore t ica l  FJO c e l l  p a r a m e t r i c  relat ion- 

ships in  an  ac tual  space  environment. In such spacc  t e s t s  l a r g e r  wall spacings 

than arc? utilized on e a r t h  would, of course ,  bc employed. Secondly, while await-  

ing a flight opportunity, fu r the r  s tudies should be conducted a imed a t  defining a 

suitable m a t e r i a l  sys tem f o r  thc  spacc  experiment.  F u r t h e r  s tudies a r e  a l s o  

retomrncnded of surface  tens ion c o n v x t i o n  in f r e e  floating spheres  and how it  

may couple with su r face  adsorption and t h e r m a l  diffusion t o  produce separat ion.  

The suggestcld ground applicat ions indicate m o r e  work with aqueous s y s -  

t c n ~ s  and packed columns.  Also ,  to se t t le  the  question once and f o r  a l l ,  a 

tho t-ough study of mul t ice l lu lar  and turbulent  cor.vec tion on separa t ion  effi - 
c i c n ~ . y  is rccon~mondcd.  F u r t h c r  s tudies of utilizing wastc  heat i b r  C 2  scpd- 

rat ions a r e  also indicated. Final ly,  m o r e  exploratory and development w j r h  

with tllc coupled tcchniqucs,  i.c., CI) plus, ficld flow fractionation (FFI'), c:cc 

t rophoros i s ,  adsorption,  and chemical  reac t ions  i s  a l s o  indicated. 
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Section 9 

CONCLUSIONS 

a n  the  bas is  of the  c r i t i ca l  reexamination of the  CDS technique, it is 

concluded that the  objectionable fea tures  of CDS a s  is conventionally employed 

can probably be circumvented by a number  of means ,  among which a r e :  

( 1) conducting the  CD operation in space  environments;  (2 )  utilizing modi - 
fied cel l  designs;  and (3) combining t h e  CD technique with other  separa t ion  

techniques,  i .e . ,  elec t rophores is ,  field flow fractionation (FFF), adsorption 

(parametr ic  pumping), and chemical  react ions.  Means ( 2 )  and (3) would 

benefit s t i l l  further  f rom space  environments.  It is a l s o  concluded that  t h e  

potential of t he  CD technique for biological and other  aqueous solution sepa-  

rat ions has  been largely  overlooked. The CD principle appears  fur ther  t o  

offer novel ea r th  applications such a s  s o l a r  water  desal inat ion,  energy con- 

version devices ,  and a u s e  for waste  heat.  
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The situation under discussion is typified by a ce l l  such a s  shown in 

the  following schematic: 

Cold (TC =L Bottom 

Fig. A- 1 - Essent ia ls  of a Non-Convective T h e r m a l  Diffusion Cel l  

In the  c a s e  of a bicomponent g a s  solution, the equil ibrium separat ion fac to r  

for  such a ce l l  a t  s teady s t a t e  i s  given by the  following express ion (Ref. A-  1,  

p. 163) 

where  c r e f e r s  t o  the  mole  fract ion of t h e  l ighter  component at the top  of T 
t h e  ce l l  and c the  mole  fract ion a t  the  bottom of the  ce l l .  The t e r m  a is 

B 
t h e  t h e r m a l  diffusion factor  ( somet imes  cal led the  t h e r m a l  diffusion constant \ 

and is defined by the  following relationships: 

A- 1 
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where  c l  and c 2  a r e  the  mole  fract ions of the  two solution components. D~ 
i s  the  t h e r m a l  diffusion coefficient,  and D12 t h e  ordinary  diffusion coefficient. 

The t h e r m a l  diffusion ra t io ,  k is strongly concentration-dependent whereas  
T ' 

the  t h e r m a l  diffusion factor  u i s  only weakly so .  As i s  readily deduced,  the  

t h e r m a l  diffusion factor  i s  indicative of the  extent of separat ion achievable 

by t h e r m a l  diffusion. 

In the  c a s e  of liquids it has been cus tomary  t o  u s e  the  convention of the  

Soret  coefficient instead of the  t h e r m a l  diffusion ra t io  and factor .  The Soret  

coefficient a i s  defined a s  follows: 

2 where  D' is the  liquid t h e r m a l  diffusion coefficient with units of c m  / s e c O c ,  

The Soret  coefficient i s  formally comparable  with a / ~ .  i o  obtain a f rom the  
0 Soret coefficient one multiplys by t h e  mean  t e m p e r a t u r e ,  in K, of the  r ange  

in which measurements  of the  coefficient w e r e  made.  The relat ionship be- 

tween the  Soret coefficient and t h e  extent of separat ion achievable a t  s teady 

s ta te  is given by (Ref.A-3, p. 25).  

If we designate the  component of s m a l l e r  molecular  weight a s  the  specif ied 

component,  a plus value of the  Sore t  coefficient indicates that it will  con- 

cen t ra te  in the  w a r m  region; a negative value indicates concentration in the  

cold reglon ( R e f .  A-2, p. 22). 

A s  indicated by the  preceding relat ionship,  the  t h e r m a l  diffusion factor  

or constant a and the  Soret  coefficient a defines t h e  d e g r e e  of separa t ion  at 

steady s ta te .  Values of a range  f rom about 0.01 t o  5 and h ~ e h e r  and those  
3 

of the  Soret coefficient a r e  typically on the  o r d e r  of 10-I - 10- /OC. 
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The relaxation t i m e  t; for  a non-convective cel l  i s  (Ref.A-3, p. 31): 

where  L represen t s  the  distance between the  p la tes  and A = ~ A T / ~ F ,  where  - 
T i s  the  mean t empera tu re .  If t h e  d is tance  between t h e  p la tes  i s  s m a l l ,  t he  

relaxation t i m e  i s  approximated by (Ref,A-4, p. 11 1): 

F o r  aqueous solutions t '  i s  on the  o r d e r  of 20 days.  
r 
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The mathematical  t r ea tmen t  of F u r r y ,  Jones and Onsager (F .TO) (Refs .  

B - 1 and B- 2 relating operational equipment p a r a m e t e r s  for  conventional CD 

ce l l s  is  general ly accepted a s  adequate for describing qualitatively the  func- 

tional relat ionships among the  various pa ramete r s .  

In the  following sect ions a brief outlined of the  relat ionships derived 

f r o m  an  elementary vers ion  of the  F JO theory  (Ref. R - 1 )  i s  presented .  

Conventionai, Single Stape Vert ical  F la t  P l a t e  and Cylindrical  Annulus Cells  
with No Rese rvo i r s  

Cylindrical  annulus ce l l s  a r e  genera l ly  used in prac t ica l  separa t ions .  

Although the  s a m e  genera l  pr inc ip les  apply t o  both ver t ica l  flat plate ce l l s  

and cylindrical  ce l l s ,  the  equations for  cyl indrical  annulus ce l l s  a r e  m o r e  

cumbersome .  P resen t  purposes  a r e  se rved  adequately by the ve r t i ca l  plate 

mathemat ics .  The na tu re  of the a l t e r n a t ~ o n s  requi red  for cyl indr ica l  annulus 

c e l l s ,  however, a r e  indicated. 

The  essent ia ls  of a ver t ica l  flat plate ce l l  a r e  shown in the schemat ic  

on the  following page. 

According t o  the  FJO theory ,  t h e  t r anspor t  7 of species  1 up the  hot 1 
wall is  defined a s  

where  H i s  a t e r m  that  r e p r e s e n t s  the  flow contr ibuted by t h e r m a l  diffusion 

and convection, K r e p r e s e n t s  the  remixing due  t o  convection c u r r e n t s ,  and 
C 

K ordinary  diffusion back down the  cel l .  At s teady s t a t e  the  t r anspor t  
d 
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Fig. B-1 - Essentials of Vexlical Flat Plate \=I3 Cell 

becomes zero and Eq ( B . l )  then yields the steady state separation factor 

where L is the length of the cell .  The term Ks + Kd i s  often replaced by '-:. 

For the vertical flat plate cel l ,  the H and K terms are defined as 

follows: 
3 -2  

d p a g 3 B  AT^) 
H = - 

61 p? 

F, - 2  
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Obviously to maximize q it is necessary to maximize H and mininize K, e' 
i .e., or maximize the vahe of A. The term A can be maximized in a variety 

OA manners depending on which parameter is considered the variable. i 'or 

example, to maximize A a s  a function of separaration spacing (d), the follow- 

ing procedure (Ref. B-2) 

dA 0 - -  - -  dK dH +- 
- dd - Hdd Kdd 

gives an optimum spacing of 

and an optimum A term of 

If now we follow a similar procedure and optimize A with respect to 

g we obtain an optimum g term of: 

where  p is an average density. The corres?onding A 

.- 
B opt term is: 

A Ho a/T = -  
gopt 20 ( l t d )  

A sample problem of the chang -n qe as a function of g level for a separa- 

tion of mercury 196 irom mercury 200 i s  shown in Fig. B-2 
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By further manipulations of the preceding relationships, the  following 

relationship can be derived. 

When working with gases ,  it i s  a l so  worthwhile t o  know the following 

relationship (Ref. B-2, p. 215) 

where a :  and b '  a r e  constants for a part icular ce l l  and a given set of opera- 

ting conditions. One problem with trying t o  increase  qe by p re s su re  increase ,  

however, is added s t r e s s  on cell  walls. 

A relaxation t ime  for a vert ical  flat plate is given by the following 

equation 

where X i s  the mass  of ga s  per  unit length of column. Equation (B.10) applies 

only in cases  where AL i s  ra ther  small ( 5  2). In ca se s  where AL i s  l a rge r ,  

a m o r e  complicated equation applies (Xef. B-2, p. 179). 

T 

The ra te  at which equlibrium i s  approached izr not l inear with t ime. 
* .. 

In the  ca se  where AL (and c l  <,C 1) i s  smal l  compared with unity, the  follow- !! ing expression gives the transient separation factor (Ref. B-2, p. 179): 

B-5  
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This equation indicates a rapid increase at the beginning of a separation 

followed by a slower increase; also the equation indicates that the initial 

r i s e  in concentration is  independent of the length of the column. 

In the case  of cylindricai annulus cells,  i.e., s ee  schematic on follow- 

ing page, the same general considerations apply. The H and K t e rms ,  how- 

ever, a r e  corrected for cell  shape by means of simple, but rather cumbersome, 

functions. The reader i s  referred to  Ref. 13-2 for details. It may be men- 

tioned, however, that a s  r 1/r2 decreases the mathematics approach those 

for the vertical plate case. 

It is  interesting t o  note that B, the cell  width, usually cancels out of 

the steady state relationships. In transient cases ,  i.e., equation (B. 1 I ) ,  

however, B remains a factor. In cases of continuous flow (Appendix C )  

also, B i s  a factor that cannot be ignored. 

(Not to scale) 
Cold 
Wall 

d = Lw 

Fig. B - 3 - Cylindrical Annulus Cell 

B-6 
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Single Stage Cells with an Infinite Reservoir  at One End 

In the ca se  of a simple closed vertical  plate (cylindrical annulus) cel l  

in which a reservoir  is  connected t o  one end, i.e., 

i I Reservoir  I 

For  mixtures in which 
the heavier component 
i s  to be separated. 

(Not to scale) 

For  mixtures in which 
the lighter component i s  
to be separated. 

-2 = L 

Fig. B-4 - Essentials of Cells with Reservoir  a t  One End 

Hot 

0 
c at z = 0 remains constant at c Given a separation factor, therefore,  1 
the  absolute final concentration at  the  enriching end can be easily calculated. 

Cold 

z = 0 (cl  

For  this cpse the equations for steady s ta te  separation factor a r e  the same 

0 
Reservoir  c 

1 
3 

a s  for the preceding cat es. 

The equations for tirne t o  reach a given level of separation and for 

relaxation t ime to  steady state,  however, are:  

where t is t h e  relaxation t ime and can b e  approxir.lated by the following 

relations hip 

B - 7  
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In t h e s e  equations it is a s s u m e d  that t h e  r e s e r v o i r s  a r e  of infinite capacity 

and c is everywhere ve ry  s m a l l  and AL i s  not (Ref. B-2). 

Condition for Avoidance of Turbulence. 

Onsager and Watson (Refs. B- 3) der ived the  approximation 

where  Re is the  Reynolds number.  They a l s o  showed experimental ly that 

turbulence occurs  when R e  exceeds about 25. The following set  of opera t ions  

shows that 

1/2 

R e  2 = 2 L  
opt 

Setting the  condition that  R e  should be  l e s s  than 25, we obtain 

Re  < 25 > 2- 
opt 

Re is usually se t  ;+ 10 t o  be  on t h e  sa fe  s ide.  The p resen t  study, however,  

for  r easons  of calculat ional  convenience will  u s e  as a c r i t e r ion  of turbulence  

s o  that  A C 10 
opt 
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It i s  sufficient for present purposes to  assume that feed at some de- 

sired constant concentration, ci, and flow rate,  a ,  in grams per second, can 

be supplied to the separation column. Taking a s  an example the case of 

sulfur isotope separation in the molten state, Case E3 in Table 1, the follow- 

ing formula can be used to  indicate the effect of flow rates on separation. If 

the flow through the column is so  slow that the full steady state separation i s  

achieved, a g, of 1.56 would result in a final concentration cf of 2.12 x 

i.e., 

Appendix C 

and 

For the case where the desired component concentratioi. i s  much less than 

one, the following formula applies 

The definitions of the t e rms  A and H a r e  in Appendix B. For.nulas for 

various other concentration ranges a r e  given ir. iief. 1. Utilizing the pre- 

ceding formula and setting a at 1 gm per day, and the width of the cell at 

C - l  
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10 c m  the following ratio would be obtained 

corresponding to a c of 2.01 x Other formulas for different conccntra- f 
tion levels  are given in Ref. C - 1. 
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An extensive bibliography is given in Ref.D-1 of Soret  coefficients for  

various aqueous and organic solutions. Additional Soret  coefficients and 

t h e r m a l  diffusion fac tors  for  other  var ied ,  solutions a r e  given in the  following 

indicated re fe rences .  

Po lymer  solutions (C -2) 
Non -aqueous e l ~ c t r o l y t i c  solutions (D -3) 
Isotopes in liquid meta l l ic  solution (D-4, D-5, D-6) 
Various meta l l ic  solutes in liqdid m e t a l s  (D-7, D-8, D-9) 
Isotopes in molten sa l t s  (D-10) 

A mult i tude of separa t ions  by t h e  CD technique the re fo re  a r e  pcssible.  

Specific separa t ions  conducted in the  liquid phase  by the  CD technique a r e  

given in the  follovfing l i s t .  The l i s t  i s  not exhaustive. Enough examples 

w e r e  chosen,  however, t o  give a good indication of the  types $ ~ f  separa t ions  

that a r e  feasible by the  CD technique. 

Biological Solutions and Suspensions 

Viruses  and r ibosomes  (D - 11) 
Deoxyyribonucleic ac id  (D- 1 I )  
Carbohydra te  solut ions (D-12, D-13) 
Homologous fatty ac ids  (a- 14) 
Monomer and d i m e r  u n s a t ~ ~ a t e d  fatty ac ids  (D-14) 
Dibasic ac id  e s t e r s  (D- 14) 
P r i m a r y  and secondary amines  (D - 14) 
Aromat ic  he terocycl ic  amines  (D- 14) 
Polysacchar ides  (D- 14) 
Mono-,di- ,  and t r i - e s t e r s  of polyols (D-14) 
Po1yoxyethy:ene so rb i t a l  e s t e r s  of r e s i n  and fattv ac ids  (D- 14) 
Fatty acids and polyol e s t e r s  (D- 14) 
Mono- and di -carboxylic ac ids  (D- 14) 
Alicyclic and al iphatic  alcohols (D - 14) 
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Alkyl amines  and hydrocarbons and phenols aid 
aromat ic  hydrocarbons (D- 14) 

Methyl e a t e r s  of s o y b e ~ n  oile ,  mixed soybean oi l  e s t e r 8  
resulting f rom par t ia l  methanolyr i r ,  and c rude  mono-, 
di- .  t r i -o loate  mixtures  w e r e  fractionated (D- 14) 

Papain - dias tase  solution (D- 13) 
Ergosterol  and choles terol  in chloroform solution (D- 13) 
Casein,  gelatm, egg albumin, papain, and d ias tase  of mal t  

solutions (D- 13) 

Aqueous Electrolyte Solutions 

Aqueous Non -Electrolyt ic  Solutions 

Water and 1-propanol. These  compounds f rom an 
azeotropic boiling mixture  (D- 17) 

Water f rom ethyl alcohol (D- 18, D-19, Lr-1) 

Pslyrner Solutions 

Polystyrene i n  toluene (D-20) 
Polyrnethyl methacryla te  in various s olvents. The 

separat ion was  s o  rapid in this  c a s e  that a CD 
column was not necessa ry  ID-21) 

Organic I somers  

C,ib and t r a n s  i s o m e r s  of 1 , 2  dimethyl-cyclohexane were  
separated.  These  i s o m e r s  have identical molecular  
weights. The c i s  i s o m e r  concentrated a t  the  bottom 
of the  column and t h e  t r a n s  i somer  at  t h e  top (D-18) 

Ortho xylene and 
meta  xylene (D- 18) 
pa ra  xylene (D- 18) 
n-heptane a n 3  t r ip tane  (D- 18) 
180-octane and n-octane (D- 18) 
2 - methylnaphthalene and 
1 .- methy1naphthaler.e (D- 18) 
n-pentane and neo-pentane (D-22) 
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@ Binary Organic Mixtures 

Separations achieved with: 

2 , 4  - dimethylpentane and cyclohexane. These  compound8 have 
almost  identical boiling point 8 ,  i.e., 80.50 and 80.74% (r - 18) 

An azeotropr ic  mix tu re  of benzyl alcohol and ethylene glycol 
(D- 18) 

C yclohexane and 

benztne (D- 18) 
toluene (D- 18) 

C etane (n-hexadecane) and 

cumcne (isopropylbenzene (D- 18) 
methylnapht halene (D- 18) 
benzene (D- 18) 
toluene (D- 18) 
m-xylene (D - 18) 
mesitylene (D- 18) 
carbon te t rachlor ide  (D- 18) 
n-heptane (D-18) 
decalin (decahydronaphthalent) (D 

Benezene and 

octadecane (D- 18) 
hexadecane (D-18) 
carbon te t rachlor ide  (D- 18) 
cyclohexane (D- 18) 
n-heptane (D- 18, D-23, D- 1.": 
bibenzyl. (D-24) 
biphenyl (D-24) 
t rans-s t i lbene  (D-24) 
o-terphenyl (D-24) 
diphenylmercur y (D -24) 

Cumene and methylnaphthal>?ne (D-18) 

Methylcyclohexane and 

n-heptane (D- 18) 
isooctane (D-18) 

n-octane and n-decane (D- 18) 

Toluene and 

chlorobenzene (D- 18) 
methylcyclohexane (3 - 17) 

n -octane and 2, Z ,  4 tr imethylpentane (D- 17) 
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n-heptane and 2 , 2  -dimernylpentane (D- 17) 

Cyclohexane and 2, 2, 3 -trimethylbutane (D- 17) 

2, 2-dimethylpentane and 

2, 2-dimethylbutane (D- 17) 
3, 3 -dimethylpentme (0- 17) 

2, 2 3 - t r im~t '~ t r lbu tane  and 

ethanol (D- 17) 

Eth, ;benzene and 2-ethoxyethanol. These  compounds f o r m  an 
azeot ropic boiling mix tu re  (D- 17) 

Chlorinated a romat ic  hydrocarbons (D- 14) 

S e ~ a r a t i o n s  not achieved with: 

Meta-  and para-xylene (D-18) 

Benzene and cyclohexane (D- 17, D :8) 

Toluene and methylcyclohexane (D- 18) 

Cetane and cyclohexane (D- 18). Separat ion was  achieved however 
in another study (D- 17). 

Aliphatic alcohols and fatty acids (D- 39) 

Ternary  Organic Mixtures 

n-octane, methylcylohexane, and cumeme (D- 18) 

Ortho-, me ta - ,  and para-xylene (D- 18) 

Oil Fractionations 

White oil (D- 17) 

Solvent refined, mid-continent lube oi l  (D- 17) 

Paraffinic type oi ls  (D - 17) 

Naphthenic type oi ls  (D- 17) 

Mid-continent paraffin dist i l late (0-25)  

Furfura l  extract  (D-25) 

Furfura l  extracted raffinate (D-25) 

Tall  oil  (D-26) 

Bromotri  fluoroethylene t e lomer  fluid (D -27) 
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Aromatic coal  tar hydrocarbons (D- 14) 

Naphthenic waxes and o i l s  (D-28) 

Isotopic Solutions 

Heavy water  f rom ordinary  water  (D-29) 

Benzene 

Cyclohexane 

'gD12 ' C 6 H ~ ~  (D- 30) 
13 12 c c5 H I Z  - 12c6 H~~ (D-30) 

Carbon disulfide 

Bromoethane 

GAS PHASE SEPARATIONS 

Values of a hi. some fifty g a s  p a i r s  are given in Ref.D-32. Informa- 

tion on ac tca l  CD separa t ions  and a values are given in the  following references .  

B r Z  and C12 in noble g a s e s  (D-33) 

13C 160 - I2c 1 6 0  (D-34, D-35) 

Argon-neon (0 -33)  

Krypton-argon (D-33) 

HZ - DZ (D-36) 

D - 5 
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Ortho - and para- hydrog en (D -3 7) 

Gas pairs  (D-38) 
- C H  "2 3 8 

C 0 2  - N 2 0  

N 2 0  - C3H8 

C 3  - CzH4 

CO - N2 
*2 - C2H4 
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SUMMARY OF EXPERIMENTAL STUDIES 
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Appendix E 

Separations in four different types of CD cel ls  we re  studied in the  cou r se  

of the  present  study. These  consisted of conventional CD columns, packed CD 

columns, rotated CD columns, and flat plate ce l ls .  The objective of the  ex- 

perimental  s tudies was threefold: 

To obtain a knowledge of the  pract ica l  problems involved with 
each type of cell.  

To determine the  effect of smal l  p r e s s u r e  gradients on separation. 

To generate  convective mult icel ls  and rpiraling flow and t o  
determine the  effect of these  flow pat terns  on CDS efficiencies. 

The work accomplished in each a r e a  i s  summarized by type of cell.  

LMSC-HREC TR D496521 

Conventional CD Columns 

The experimental  work with conventional CD columns was performed by 

Barbara  Facemi r e  of the  NASA-George C. Marshal l  Space Flight Center .  The 

apparatus used in this  phase of the  study was the  commerc ia l  Thermo-Search I1 

apparatus (made by Technical Research Instrument a, Inc., 288 -B Murray  Drive. 

King of P ru s s i a ,  Pennsylvania, 19406, telephone 215-265-0832). The essent ia ls  

of the apparatus a r e  \own in Fig. E-  1. Essent ia ls  of the columns provided 

with the Thermo-Search I1 a r e  shown in Fig. E-2. The Thermo-Search I1 

can monitor and control  the  hot and cold flows f rom the  water  baths f rom 

under 0.2 L/min t o  over 2 L/min. (Fur ther  detai ls  in Ref. E - 1). 

The spacings between hot and cold walls that were  utilized were  0.1, 0.2, 

0.3, and 0.4 mm.  The lengthe of the  ce l l s  we re  a l l  30.5 c m ,  The t empera tu re  

of tile hot and cold flows we re  ei ther 56 + 3OC and 22 +Z°C o r  50 + Z°C and - - - 
5 f : 2 O ~ .  Separation of a s e r i e e  of copper culfate solutions of 1.0 M concen- 

trat ion were  studied as a function of wall epacing. The concentrations of the  
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solutions were  determined by means of an ABBE-3L Refractometer. Table 

E- 1 shows some typical data on the effect of cel l  spacing on separation level 

achieved. Table E-2 shows some typical data on separation a s  a function of 

t ime. 

The interesting result of the  experiments i s  that the 0.1 m m  wall 

spacing (see  Table E- 1) gave the  worst separation and the  0.4 m m  wall 

spacing generally the best separation, contrary t o  theory. (Variations in the  

s izes  of the  samples taken for analysis caused some minor variations.) The 

most  probable explanation is that at the smal ler  wall spacings misalignment 

and wall imperiections caused a stagnation of the  solution in some regions. 

The result emphasizes the  c r i t i ca l  nature of the  wall spacing. An attempt 

t o  identify the  convective flows at each wall spacing by injecting dye ( red food 

culoring) interestingly enough indicated no count ercurrent  convectilm at any of 

the  wall spacings. The solutions containing the dye showed the behavior shown 

in Fig. E- 3. This result  is indeed puzzling. 

Packed Columns 

In this  phase, CD columns were  constructed f rom ordinary laboratory 

g lass  tubing 2nd packed with a variety of mater ia ls .  No extraordinary measures  

were taken to  align the columns; i.e., the columns were  judged to  be re'tsonably 

well aligned i f  they looked straight. Table E- 3 shows some selected resul ts  of 

these  runs. 

As discussed in Section 7, the data given in Table E-3 i s  ra ther  difficult 

t o  accept solely on the  basis of reduced convection. It would appear that 

adsorption aided separation in the  packed columns. 

Rotated Columns 

This portion of the  study was performed at  the  University of Texas,  

Austin, under the  direction of Dr .  E. L. Koschmieder. Mr.  William Jeckson, 

a graduate student, performed the laboratory separations. As mentioned 
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EFFECT OF WALL SPACING ON SEPARATION 
OF A 1.0 M AQUEOUS COPPER SULFATE SOLU7ION 
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i 

Sample Size 
Analyzed 

(ml) 

0.03 

0.06 

0.09 

0.03 

0.06 

0.09 

0.13 

0.06 

0.06 

0.06 

0.06 

0.06 

0.06 

0.06 

0.05 

Gap Width 

(mm) 

Time 

(hours) Top 
1 

Molarit y 

Middle 

Proportional Analysis Samples 

Bottom 

0.920 

0.940 

0.920 

0.800 

0.750 

0.760 

0.750 

0.920 

0.940 

0.900 

0.900 

0.840 

0.750 

0.760 

0.700 

0.1 

0.2 

0.3 

0.1 

0.2 

0.3 

0.4 

1.14 

1.280 

1.340 

0.920 

2.460 

2.080 

2.320 

1,100 

1.280 

1.340 

1.520 

0.920 

2.460 

2.260 

2.700 

5 

5 

5 

24 

24 

24 

24 

0.850 

0.760 

0.900 

0.740 

0.700 

0.660 

0.520 

0.920 

0.760 

0.860 

Equal Anal) sis Samples 

0.1 

0.2 

0.3 

5 

5 

5 

0.4 

0.1 

0.2 

0.3 

0.4 

0.700 

24 

24 

24 

24 

0.760 

0.700 

0.680 

0.520 



Table E-2 

SUMMARY OF TIME-DEPENDENC E TESTS 

Note: 2 mm wall spacing. 

Time of Run 
(hours) 

0.5 

\ .O 

2 .O 
3 .O 

5 .O 

8.0 

20 .O 

25.0 

50 .O 
i 

E-6 
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Separation Efficiency C/C 

Bottom 
I 

1 .O 

1.022 

1.087 

1.12 

1.02 

1.06 

1.48 

2.08 

2.35 

h 

TOP 

1 .O 

0.935 

1 .O 

0.95 

0.85 

0.82 

0.76 

0.72 

0.72 

Mi?. !le 

1 .O 

1 .O 

1 .O 

0.92 

0.86 

0.84 

0.85 

0.80 

C .84 
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Initial 10 min. 30 min. 1 hr. 4 hrs. Final Condition 
Condition 
(24 hrs . )  

Fig. E-3 - Progres~aion of Dye in Flow Tests 
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previously, ;he objectives of th is  portion of the  work we re  t o  determine t he  

effect of smal l  p r e s s u r e  gradients and of spiraling o r  mult icel lular  convection 

on separation efficiencies. 

Description of A p ~ a r a t u s  

A schematic c r o s s  section of t he  apparatus used is shown in Fig. E-4. 

The apparatus consisted of two concentric b r a s s  cylinders marked  (1) and (2) 

on Fig. E-4. The gap between these  cylinders was filled with the experi-  

mental  fluid. The cylinder walls we re  heated o r  cooled, respectively,  by 

water  circulated along the  cylinder walls.  The b r a s s  cylinders (1) and (2) 

we re  25.4 c m  long; the  inner d iameter  of the  outer cylinder was 7.62 cm;  

and the  outer d iameter  of the  inner cylinder was 5.715 cm.  The radi i  of 

both cylinders were  specified t o  be accura te  t o  a t  leas t  0.00254 cm.  The 

outer cylinder was 0.3175 c m  and the  inner cylinder 0 238 c m  thick. The 

gap  width between both cylinders would be varied by slipping cylinders with 

different outer d iameters  over the  inner cylinder. Such a cylinder is in- 

dicated in Fig. E-4 by the  m a r k  (7). The following gap widths we re  used: 

0.953 c m  for the  regular  gap  between both b r a s s  cylinders and 0.254 c m ,  

0.127 cm,  and 0.0508 c m  for t h r e e  gaps  between the  outer cylinder and 

different inner cylinders. Note the  importance,  in par t icular ,  for the  

smal les t  gap t he  accuracy of the  radi i  of the  cylinders.  The fluid in the  

gap  between both cylinders was contained at  the  bottom by a lucite ring 

marked (3), which ring was sealed with Dow Ccrning si last ic .  The fluid 

was covered on top by  a lucite lid ( 5 ) ,  which is sealed toward the  s ide  by 

an 0 ring. Probes  of the  fluid were  taken with syringes through a hole in 

the  lid and the  bottom. The fluid column between the  bottom ring and the  

lid was 20.32 c m  long. 

The t empera tu res  of the  b rass  cylinders were  set a s  follows. Water 

was circulated upward through a 1.27 c m  wide center  hole in the  lucite piece 

(4) which filled near ly  the  ent i re  inner cylinder. At the  upper end of the lucite 

piece the  flow hit a conical bakelite piece (6) and was forced t o  sp read  side- 

ward. The flow then moves along the  wall of the  inner b r a s s  cylinder in a 

0.159 c m  wide gap between the  lucite and t he  cylinder. This ar rangement  

E- 9 
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Lwite Brorr @ Aluminum 

Fig.  E-4 - Cross  Section of Separation Apparatus 
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guarantc:ecl a uniform tempera tu re  distribution along the  wall of the  inner 

cylinder. The cooling o r  heating water  was discharged f rom the  inner cy- 

1indt;r t5rough t h r ee  equidistant holes a t  t he  lower end of the  lucite piece. 

The, t empera tu re  of the  outer cylinder was se t  in a corresponding way. 

Water wqls fed through a hose into an  open c i rcu la r  container (8) around the  

top of the apparatus. F r o m  t h e r e  the  water  flowed through a na r row gap 

between *he outer b r a s s  cylinder and a surrounding lucite cylinder. The 

r a t e  of f: 3w was controlled through a narrowing at  the  lower end of the  

lilcit e cy ,.inder, ensuring that the  ent i re  b r a s s  cylinder was wetted and a 

uniform temperature  along i t s  wall was obtained. After passing the  cylinder 

the  water was collected in a c i rcu la r  container (9) f rom which it was removed 

by a suction pump. Flow r a t e s  along the  inner and outer cylinder varied 

between 50 t o  100 cm/sec .  The water  was forced into the  inner cylinder f rom 

below through a ro tary  gland. The heating o r  cooling water  was supplied by 

two 10-gallon Aminco constant t empera tu re  baths, which controlled the  

water  t empera tu re  t o  20. 1°c. The t empera tu re  difference between both 

cylincters was ,  in most  of the  experiments,  20°c. The mean tempera tu res  

of the test  fluid in the  gap between both b r a s s  cylinders was equal t o  room 

temperature .  

It was possible t o  heat ei ther the  inner o r  the  outer  cylinder e lec t r i -  

cally, a s  .was done in s eve ra l  previous separation experiments,  but it seemed 

des i rable  t o  be able t o  r e v e r s e  the  direction of the  radia l  t empera tu re  

gradient between bcth cylinders. Since cooling could be accomplished only 

by circulating a fluid along the  wall to be cooled, the  arrangement a s  descr ibed 

above had t o  b used in the  present  experiments.  

The apparatus was mounted on a c i rcu la r  bakelite plate 1.27 in. thick. 

This late,  in turn ,  was mounted on a c i rcu la r  aluminum plate (the base  of 

th turntable). The turntable,  which had been used before,  was improved for 

these  experiments by an additional heavy thrus t  bearing which reduced a 

slight wot bit that had occurred previously. Also, for these  experiments,  

the  dr ive  of the  turntable was improved by a new 1/4 hp  Graham variable 

s ~ e e d  drive.  As it turned out, the  rotation r a t e  did never theless  dec r ea se  
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by about 127'0 when the  motor was run continuously over a couple of days. 

The rotation r a t e  was measured electronically with a microsecond counter. 

The axis of the akparatus was aligned with the  vert ical  and the axis of the  

apparatus was made to  coincide with the axis of the  turntable. 

Slow Rotation Experiments and Results 

The experiments were  made a s  follows: the  temperatures  of the  

cylinder walls were  set f i rs t  by circulating water of different temperature  

along them. The gap between the cylinders was then filled with the tes t  

fluid, an ethanol-water solution of 50% weight concentration. When the  

solution was in the gap a probe of about 0.4 m l  was taken in order to deter-  

mine the  exact concentration by measuring the  refractive index of the solution. 

The refractive index was measured with an ABBE-3L refractometer manu- 

factured by Bausch and Lomb. 

As soon a s  the  solution was poured into the  annulus, rotation was 

started,  and the t ime  of revolution was measured.  The dial setting for the 

motor was maintained throughout each experiment, although the t ime  for one 

revolution increased up to  2%, though this increase  took place very slowly 

over a couple days. Samples of the  tes t  fluid were  originally taken at  

t imed intervals. However, it was learned that this procedure disturbed the 

concentrations later  on. In most  of the experiments the concentration was 

measured again only at the end of the experiment, in most cases  after  t h r ee  

days of continuous operation. Separation was then determined by subtracting 

the ethanol concentration a t  the  bottom from that at  the top. 

The first  experiments were  made with the 0.953 c m  gap. It was,  of 

course ,  realized that this gap was substantially wider than the gaps used 

normally in separation experiments which a r e  of order  of 1 mm. However, 

it  was hoped that rotation would have a substantial effect on separation and 

therefore this gaF width was t r i ed  first .  Finally it was assumed that the 

centrifugal circulation in a very narrow gap might be suppressed by 

boundary layer effects, and that therefore a l a rge  gap might be advantageous. 
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However, t h e  change in concentrat ion m e a s u r e d  with the  0.953 c m  g a p  was 

within the  e r r o r  with which the  ref rac t ive  index can be m e a s u r e d  and hence 

insignificant. Experiments w e r e  then m a d e  with gaps of 0.254, 0.127 and 

finally 0.0508 cm.  At 0.02 inches ,  t h e  exper imenta l  e r r o r s  associa ted  with 

t h e  separat ion w e r e  to lerable .  

At 0.0508 c m ,  which m a d e  it indeed a n a r r o w  gap,  the  accuracy  of t h e  

machining of t h e  cylinder walls  became impor tant ,  but the  separat ion (concen- 

t r a t ion  a t  the  top  of the  cclumn minus the  concentration a t  the  bottom of the  

column) was then in t h e  0.15 t o  0.20 range  af ter  t h r e e  days of operat ion.  The 

measurements  w e r e  f i r s t  m a d e  with a nagative t e m p e r a t u r e  gradient  in the  gap ,  

that  means  with a w a r m  inner  and a cold outer  cyl inder.  As Fig. E-5 shows,  

t h e s e  measurements  indicate a slight i n c r e a s e  of separat ion with 9 .  This 

i n c r e a s e  may  s t i l l  be,  within the  e r r o r  m a r g i n ,  compatible with a constant 

separat ion.  In o r d e r  t o  check on th is  resul t  t h e  t e m p e r a t u r e  gradient  a c r o s s  

t h e  g a p  was r e v e r s e d ,  that  m e a n s  that the  outer  cyl inder was now made  warm.  

In th i s  c a s e  the  m e a s u r e m e n t s  indicate ( see  Fig.  E-5) that t h e r e  i s  a s m a l l  

d e c r e a s e  of separa t ion  with !2. Since the  centr ifugal  circulat ion r e v e r s e s  

with a r e v e r s a l  of t h e  t e m p e r a t u r e  gradient ,  t he  d e c r e a s e  of separat ion in 

the  c a s e  of a positive t e m p e r a t u r e  gradient  s e e m s  t o  confirm the  inc rease  

of separat ion with a negative t e m p e r a t u r e  gradient .  It thus s e e m s  a s  i f  the  

s m a l l  centrifugal force  equivalent t o  about 2x 10-3 g has ,  indeed, an effect 

on t h e  separat ion in a rotating la tera l ly  heated annulus. 

Flat  P la te  Cel ls  (Unpacked and Packed) 

The objective of th i s  phase  of the  experimental  work was p r imar i ly  

t o  demonst ra te  t h e  effect of mult icel lular  convection on separat ion.  The 

experimental  ce l l s  used in th i s  study consis ted  of two rec tangular  boxes 

measur ing 35.6 x 10.2 x 2.54 c m  and 35.6 x 10.2 x 1 c m  constructed with 

1.91 c m  thick plexiglass p las t ic  ma te r i a l  and 0.317 c m  thick aluminum 

(2.54 c m  cel l )  o r  s ta in less  s tee l  (1  c m  cel l )  plate for the  top and bottom 

surfaces  t o  e n s u r e  i so the rmal  boundary conditions. The two aluminum or  
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s t a in less  s t ee l  su r faces  w e r e  fitted with water  jackets for differential  heating 

and cooling. The t e m p e r a t u r e s  of t h e  hot and cold s u r f a c e  of the  t e s t  ce l l  

w e r e  monitored by copper-constantan thermocouples.  Water was used a s  

the  working fluid during t h e s e  t e s t s .  

Two methods w e r e  used t o  visual ize the  flow. The f i rs t  cons is ted  of 

mixing s m a l l  aluminum par t i c l e s  in t h e  water .  The convective c u r r e n t s  

could then be viewed through t h e  plexiglass s ides .  The  second technique 

used was an  optical shadowgraph s y s t e m .  A schemat ic  of the  shadowgraph 

is shown below. 

Focus ine 

Light Col l imat ing  
S o u r c e  L e n s  16 mm Viewing 

W a t e r  Camera 
C e l l  

S c r e e n  

With th is  sys tem one can view on the  s c r e e n  d i rec t ly  changes in density g r a -  

dients for na tu ra l  convection flows. The addition of pa r t i c l e s  i 5 suitable f o r  

determining conditions which genera te  mul t ice l l s  but cannot be used during 

separat ion t e s t s .  

Severa l  experiments w e r e  run t o  de termine  i f  mult icel lular  convection 

flows could be genera ted  in the  t e s t  ce l l .  The p r e f e r r e d  mode for a box in the  

ver t ica l  position heated f r o m  the  s ide  i s  unicel lular ,  however.  a s  the  Rayleigh 

number is inc reased  secondary flows a r e  genera ted .  F o r  our  t e s t  c e l l ,  at the  
6 l a rges t  AT that  could be maintained,  40°C and Ra = 6 x 10 , only the  unicel lular  

flow could be observed.  Multicells a r e  genera ted  in a horizontal  box heated 

f rom below (Ref. E-2) .  however,  th is  configuration does not genera te  the  move-  

ment pa ra l l e l  t o  the  hot and cold s ides  needed for t h e r m a l  separat ion.  l'. i 

solution t o  th is  problem i s  t o  incline the  ce l l  f r o m  horizontal  while s t i l l  
a s 
C 

E- 15 
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maintaining mul t i ce l l  flow pa t ,e rns .  Tab le  E-4  shows t h e  r e s u l t s  of expe r i -  

m e n t s  in  which t h e  t e s t  c e l l  was  incl ined f r o m  t h e  hor izonta l  posi t ion.  A 

disadvantage  of t h i s  technique  fo r  wa te r  is tha t  only a f a i r ly  s m a l l  t e m p e r a -  

t u r e  d i f fe rence  can  be main ta ined  o r  t h e  flow wi l l  g o  turbulen t .  Tu rbu lence  

m u s t  be avoided in  t h e r m a l  s epa ra t ions  s ince  it wil l  c a u s e  remixing  t o  occu r .  

F r o m  t h e s e  t e s t s ,  i t  w a s  shown tha t  a 25-degree  inclination f r o m  hor izonta l  

l a m i n a r ,  mul t ice l lu la r  convection could be main ta ined  in t h e  t e s t  c e l l  along 

with a r ea sonab le  unice l lu la r  ou te r  flow. Inclining above 25 d e g r e e s  p r o -  

duced  only unicel lular  i low pa t t e rns .  

Tab le  E-4 

FLOW PATTERN AS FUNCTION O F  INCLINATION ANGLE 
O F  F L A T  P L A T E  C E L L  

Another  m e a n s  of control l ing the  flow pa t t e rn  possibly i s  by packing. 

A number  of p a p e r s  i n  t h e  l i t e r a t u r e  indicate  tha t  packing r e d u c e s  convect ive 

ve loc i t ies .  By packing,  t h e r e f o r e ,  t h e  onset of tu rbulen t  convection can  

Rayleigh 
Number  

1 

4 x  10 5 

7 x  10 5 

4 x 10 5 

4 x 10 5 

4 x  10 5 

8 x l o 5  

. 

probably  be  delayed enabling higher  t e m p e r a t u r e  d i f f e r ences  t o  be ut i l ized.  

Higher  t e m p e r a t u r e  d i f fe rences  could a l s o  be L: i l i zed  in  low. envi ronments .  

In  t h e  t e s t s  conducted during t h e  p r e s e n t  s tudy ,  both packed and unpacked 

c e l l s  w e r e  s tudied.  Tab le  E - 5  s u m m a r i z e s  t h e  expe r imen ta l  t e s t s  accompl ished  

AT 

( O C )  

5 

9 

5 

5 

5 

10 

Inclination 
f r o m  Horizontal  

(deg)  
L 

5 

5 

21.8 

23.4 

30.1 

30.1 

with t h e  flat  p l a t e  ce l l s .  

Type  of Flow 

Mul t ice l l -  Lamina r  

Mult icel l -Turbulent  

Mult ic  e l l -  Lamina r  

' Multicel l -  L a m i n a r  

Unicell-  Lamina r  

Unicel l -Turbulent  

E- 16 
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I Table E-6 
SUMMARY OF EXPERIMENTS WITH VERTICAL FLAT PLATE CELLS 

t 

The resu l t s  a s  can be  seen  a r e  inconclusive. The t e m p e r a t u r e  differences 

in t h e s e  studies w e r e  probably too  smal l .  Unfortunately, t i m e  did not pe rmi t  

exploring higher AT values in t h e  packed ce l l s .  

REFERENCES 

* 
Separation 

in 120 hours  

None 

None 

None 

None 

None 

N one 

None 

N one 

E -  1. Harner, H. A., and M.  M. Bellamy, "Applications for  Liquid Thermal  
Diffusion," A m .  Lab., January  1972, pp. 41-44. 

C e l l  
Position 

Ver t ica l  

Inclined 
23' 

Vert ical  

Inclined 
23' 

Vert ical  

Inclined 
2 3O 

Vert ical  

Inclined 
23O 

Cell  

A 

A 
packed with I g l a s s  wool 

B 

B 
packed with 
g l a s s  wool 

E-2.  Stock, K., and W. Mul ler ,  t fConvection in Boxes," J. Fluid Mech., 
Vol. 54, 1972, pp. 599-611. 

Tes t  
Solution 

0.15 M 
s u c r o s e  

0.1 M 
copper 
sulfate 

Rayleigh 
No. 

5 x lo5 

5 x  10 

d 
(cm)  

2.54 

1 

1 

Flow 
Pa t t e rn  

Unicell 

Multic e l l  

Probably 
Unicell 

? 

Unicell 

Mult icel l  

Probably 
Unicell 

? 
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Appendix F 

The numerical  modeling of a CD ce l l  was explored very briefly. It 

was anticipated that a numerical  analysis  wovrld undo~ibtedly be a difficult 

and complicated task  and, therefore ,  beyond the  scope of the present  stu 

However, it was of in teres t  t o  identify the  types of difficulties that would t 

encountered and t o  determine i f  they could be readily circumvented t o  yielu 

useable resul ts .  The impetus for this  work was the  difficulties noted in the  

experimental work of identifying the boundary conditions for generating 

multicellular convection. Also, Lockheed had already on hand a convection 

p rogram (the Lockheed Convection Analysis P rog ram (LCAP) which had 

been used t o  successfully analyze a number of low-g and one-g convection 

problems.  A few exploratory runs ,  t l ~e r e fo r e ,  could be undertaken a s  a 

minor  task  under the  total  study. 

The determination of the flow, thermal ,  and concentration fields in a 

GD cel l  requires  tht  simultaneous solution of the Navier-Stokes equations, 

the  energy equation, and the  species equations. In the LCAP the Navier- 

Stokes equations a r e  used in primit ive form ra ther  than invoking t r an s -  

formations o r  change of variables.  The equations a r e  modified t o  include 

a modified Boussinesq equation of state.  A binary mixture i s  assumed such 

that only one specie equation needs t o  be considered. The numerical  

algori thm proceeds ~s follows: 

1. The energy equation is solved t o  yield the t empera tu re  
distribution. 

2. The modified Boussinesq equation then yields the densit y 
profile. 

3.  The momentum equations a r e  solved t o  yield the  flow rate.  

4. The specie equation yields the concentration profile. 



LMSC -HR)'C TR D496521 

5. The global continuity equation i s  then solved for the overall  
m a s s  balance in the  sys tem.  

6 .  The process  i s  repeated for each tiri-.: s t ep  until p steady s ta te  
i s  reached. 

Values of the  Sor?t coefficient a r e  of tt.a o rde r  of magnitude of 10 - 3 

t o  reciprc-.al degrees  both in gaseou* awd liquid mixtures.  This fact 

implies that the the rmal  diffusion t e r m  the t,pecie equation may have 

little effect on the  flow :nd the  the rmal  fields. Consequently, for the interest  

of saving computation t ime ,  one may  obtain the  steady s ta te  the rmal  and 

flow fields by just considering tile Navier-Stokes equations and the ellergy 

equation. With the  known the rma l  and flow i ields one can then solve the 

specie equation for concentration distribution. 

The modified p rogram was applied t o  the  c a s e  of a cylindrical column 

shown in Fig. F-1. The cylindrical annulus was fi.lled with a 570 copper 

sulfate water  solution initially at 304%. The ends of the column were  

insulated. The inner cylindrical surface  was heated to  334.4 '~ while the 

outer surface  was cooled t o  273.6%. The gravity level was asscmed  t o  be 

l oo3  of the  ea r th  gravity. 

Oar numerical  r esu l t s  show that for the 57'0 copper sulfate water  

solution in the  said cylindrical column, steady s ta te  t empera tu re  and 

velocity fields prevail  for  T > 50 sec .  However, the  concentration field 

is essentially the  s a m e  as t he  initial s tate.  

An examination on our resu l t s  shows that ,  at the selected g level  f!0-3 

of ea r th  gravity) ,  the  steady s ta te  t empera tu re  dietribution i s  essentially 

governed by one-dimensional heat conduction only. Except for regions very 

c lose  t o  the ends of the  column, the  u-velocity ib l e s s  than the v-velocit y by 

an o rder  of t h r ee  o r  more .  This suggests  that ,  for a column in low-g 

environment, the one-dimensional flow model i s  realist:;. The t empera tu re  

m a p  i s  shown in Fig. F-2. It is seen that the isotherms a r e  a l l  straight 

l ines  Shown in Fig. F-3 ie  the  flow map. It i s  c lea r  that the flow i s  essen-  

t ial ly one-dimensional except the  regions ve.*y c lose  t o  the ends of the  c o l a m .  

F-2 
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Fig. F. 1 - The Cylindrical Diffusion Column 
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Fig .  F-2 - Temperature Map 
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The v-velocity d i s t r i t  .tions at  z = 0.05L, 0.45L, and 0.95L a r e  displayed in 
E 

Fig. F-4. Also shown in Fig. F-4 is the velocity predicted by one-dimensional 

model. The model is seen to  be, a s  we expect, realist ic.  

I With the velocity and the thermal  fields known, we could proceed to  

solve the specie equation. The concentration m a p  at t = 14 hours i s  shown 

I in Fig. F-5. It is seen that m o r e  CuS04 a r e  accumulated at the  bottom of the 

column. However, the  concentration in the colurnn i s  everywhere grea te r  
F 

I 
than the  initial value! This i s  physically impossible and i s  mainly dde t o  the  

a cumerical  e r ro r .  

- 
I, The difficulties discovered with a numerical  a n ~ l y s e s  of CD a r e  

-- determined to  l ie in the a r e a s  of numerical  stability and finite-difference 

non-conservation. The numerical  solution of the binary specie equation was 
1 9  

not obeying s t r ic t  conservation of mass  and computation truncation e r r o r s  . * 
grew in magnitude. This resulted in an invalid solution for the concentration 

profiles. The basic problem a r i s e s  because of the large number of t ime 
-. iterations required t o  achieve a steady state for the slow processes  of CD 
-. or thermal  diffusion. 

* - 
F r o m  this brief  study, it i s  concluded that a numerical  solution of the  

. . CD problem i s  feasible with current technology; however, such a computer 
- .  program cannot be successfully developed a s  a "sidelight" of another type of 

. . effort. A specific study should be undertaken to  develop a finite-differe-lce 

LI solution of the "conservation" form of the binary species equation and then 

1' . . t o  couple the effects of concentration gradients of the buoyant forces. This 

will allow each specie t o  be exactly conserved in a confined region such a s  . - 
an annulus. In addition, a t ime-scale  algorithm should be developed to  scale  . . 
the  thermal  diffusion t ime  t o  the  same magnitude a s  the bulk fluid flow .. 
(convection) character is t ic  t ime.  This will result  in a very efficient solution 

0- in t e r m s  of computer costs  and feasibility. These new features can then be 
Z 

coded a s  subroutines and added to  the  LCAP code. Solutions for r e a l  CD 
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0 z = 0.05L 

z = 045L 

0 z = 0.95L 

R = 0.582 c m  
L = 17.1 c m  

0.7 0.8 0.9 1 .o 

r / R  

Fig .  F-4 - V-Velocity in the C01utnn 
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separation problems can then be analyzed (at any gravity level) and the results 

compared to experimental data. On the basis of the brief study made in this 

work, it is believed that development of this type of computer program is  

feasible and would be useful as  an aid in further understanding and applying 

CD separation processes. 
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Appendix G 

Newcomers t o  the field of CD separation can become easily confused 

because investigations conducted on gases  have employed fraction, volume 

fraction, and weight fraction units, while investigations dealing with liquids 

have generally utilized molar  o r  molal units. It may be worthwhile t o  mention, 

therefore ,  that the  value of the  diffusion coefficient i s  dependent on the units 

used for concentration. The dependence of diffusion coefficients on units 

used for concentration can be seen from cons ide ra i i u~  oi the following 

relations hips: 

Molefraction Units = n M  WtlDc (gm/crn2-sec) 

where n i s  the total number of moles per  unit volume. 

Weight Fraction Units aw 2 
Jw = P D w ~  (gm/cm -sec)  

1 

Molar Concentration Units J 
1 2 

= Wt? D m =  
(gm/cm -set) 

m l  

where the J t e r m s  a r e  diffusional fluxes. By performing a set  of simple 

mathematical operations, an example of which i s  subsequently given, r e  - 
latioraships of the  form 

can be readily obtained. It i s  a lso  useful t o  know that 

G-1 
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Exal.~ple Conversion of D- to D- 

and 

Let 
moles 1 

m l  = v 

and 

Therefore, 

moles 1 
'1 = moles 1 + moles 2 

rams 1 + grams 2 
P = g  v 

moles 1 +moles  2 m l  = C  grams 1 +grams 

Furthermore, 
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